
Copper Alloy Products

Alloys Map (Strip & Sheets)

2024

Copper Alloy Products (Strip & Sheets)

- Copper
- Red Brass
- Brass
- Phosphor Bronze
- Nickel Silver
- P144C
- <u>P1806</u>

- <u>P102M</u>
- <u>P90</u>
- <u>P90HYPER</u>
- <u>P194</u>
- P194HSL
- <u>P425</u>
- <u>P26</u>

- P26HYPER
- P26Special
- P1000HS
- P1000HS2
- P1000HS3
- <u>P70</u>

PONGSAN

Strip & Sheet Products

PODNGSAN

Alloy	UNS No.	JIS No.	Page
Oxygen-Free Copper, OFC	C10200	C1020	3
Tough Pitch Copper, TP	C11000	C1100	6
Phosphorus Deoxidized (Low P), DLP	C10300	-	9
Phosphorus Deoxidized (High P). DP	C12200	C1220	12
Red Brass (RB1)	C21000	C2100	15
Red Brass (RB2)	C22000	C2200	18
Red Brass (RB3)	C23000	C2300	21
Brass (B1)	C26000	C2600	24
Brass (BA)	C26800	C2680	27
Brass (B2)	C27200	C2720	30
Brass (B3)	C28000	C2801	33
Phosphor Bronze (PB1A)	C51100	C5111	36
Phosphor Bronze (PB1B)	C51000	C5102	39
Phosphor Bronze (PB2)	C51900	C5191	42
Phosphor Bronze (PB3)	C52100	C5212	45
Phosphor Bronze (Spring)	C52100	C5210	48
Phosphor Bronze (Super Spring)	C52400	C5240	51
Nickel Silver (NS1)	C73500	-	54
Nickel Silver (NS2)	C74500	C7451	57
Nickel Silver (NS3)	C75200	C7521	60
Nickel Silver (Spring)	C77000	C7701	63
P1240 Nickel Silver	-	-	66
P144C	C14410	C1441	69
P1806	C18060	_	72
P102M	C19015	-	75
P90	C19210	C1921	78
P90HYPER	C19217	-	81
P194	C19400	C1940	84
P194HSL	C19400	C1940	87
P425	C42500	C4250	90
P26	C64750	-	93
P26HYPER	C64750	_	96
P26Special	C19005	-	99
P1000HS	C64751	-	102
P1000HS2	C64752	-	105
P1000HS3	C64752	-	108
P70	C70250	-	111

C1020 Oxygen-Free Copper

POONGSAN

UNS No. C10200

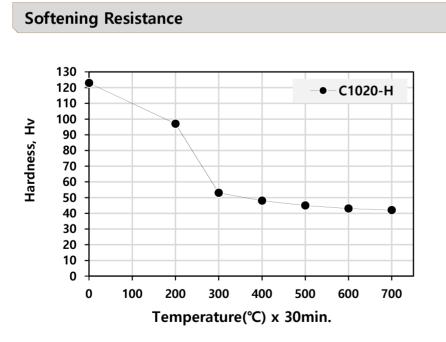
Features

C1020 is a high purity, oxygen free, non phosphorus-deoxidized copper that does not contain in vacuum evaporating elements.

- High electrical and thermal conductivity.
- Good welding and excellent soldering properties.
- Excellent hot and cold forming properties.

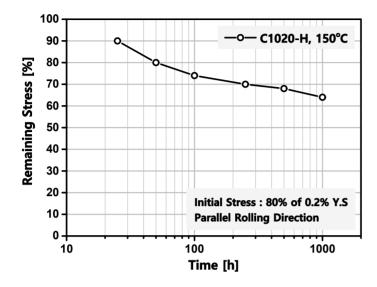
Typical Applications

- Automotive Rectifiers
- Tubes
- Heat sinks


•	Coaxial
---	---------

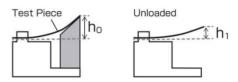
- Bus bars
- Conductors
- Cable
- Wire
- Sputtering target

Chemical Co	mposition (wt%)	Physical Properties		
Cu	≥ 99.99	Melting Temperature	°C	1083
0	< 0.001	Specific Gravity	-	8.94
		Thermal Conductivity	W/(m·K)	391
		Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.6
		Modulus of Elasticity	GPa	117
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	101


Mechanical Propertie	es				
Temper		0	1/4H	1/2H	н
Tensile Strength	MPa	≥195	215-285	235-315	≥275
Elongation	%	≥35	≥25	≥15	-
Hardness	Hv	-	55-100	75-120	≥80
0.2% Yield Strength	MPa	Max 140	≥180	≥220	≥250

r/t (Mini	mum Bending Ra	dius / thickness)			
т	emper	ο	1/4H	1/2H	н
90 ⁰	Good way	0.0	0.0	0.0	0.0
90	Bad way	0.0	0.0	0.0	0.5
180 ⁰	Good way	0.0	0.0	0.5	1.0
100	Bad way	0.0	0.0	0.5	1.0
•	ckness ≤0.5mm	I	Bending Directio	on 🔽	_
• Test san	ple width 10mm		 A : Good Way (Transverse to B : Bad Way (Parallel to R 		irection [RD]

POONGSAN


Stress Relaxation Resistance

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Resistant to : industrial atmosphere, industrial and water, pure water vapour, non oxidizing acids, alkalis, neutral saline solutions.

Not resistant to : oxidizing acids, hydrous ammonia and halogenated gases, hydrogen sulfide, seawater, especially with flow rates.

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Fail
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Good
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended
Brazing	Excellent		

C1100 Tough Pitch Copper

PODNGSAN

UNS No. C11000

Features

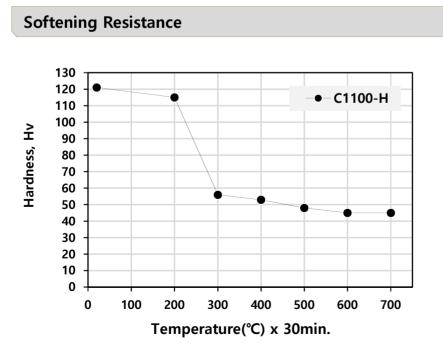
C1100 is about 99.9% purity of copper.

- High electrical and thermal conductivity.
- Good drawability
- Corrosion resistance and weather resistance

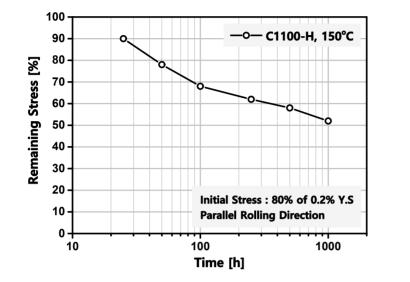
Typical Applications

- Automotive Radiators
- Automotive Gaskets
- Heat sinks

 Electrical 	Transformer Coils
• Bus bars	

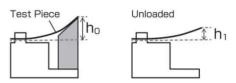

Switches

- Heat Exchangers
- Terminals
- Terminal Connectors


Chemical Cor	mposition	(wt%)	Physical Properties		
Cu	≥ 99.9		Melting Temperature	°C	1083
			Specific Gravity	-	8.91
			Thermal Conductivity	W/(m⋅K)	391
			Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.6
			Modulus of Elasticity	GPa	117
			Poisson's Ratio	-	0.33
			Electrical Conductivity	%IACS	100

Mechanical Propertie	es				
Temper		0	1/4H	1/2H	н
Tensile Strength	MPa	≥195	215-285	235-315	≥275
Elongation	%	≥35	≥25	≥15	-
Hardness	Ηv	-	55-100	75-120	≥80
0.2% Yield Strength	MPa	-	-	-	-

r/t (Mini	mum Bending Ra	dius / thickness)			
т	emper	ο	1/4H	1/2H	н
90 ⁰	Good way	0.0	0.0	0.0	1.0
90	Bad way	0.0	0.0	0.5	2.0
180 ⁰	Good way	0.0	0.0	0.5	1.5
	Bad way	0.0	0.0	1.0	2.5
•	ckness ≤0.5mm	I	Bending Directio	on 🖯	_
• Test sam	ple width 10mm		A : Good Way (Transverse to B : Bad Way (Parallel to R		irection [RD]



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Resistant to : industrial atmosphere, industrial and drinking water, pure water vapour, non oxidizing acids, alkalis, neutral saline solutions.

Not resistant to : oxidizing acids, hydrous ammonia and halogenated gases, hydrogen sulfide, seawater, especially with high flow rates.

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Not Recommended
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Fair
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended
Brazing	Good		

C1030 Phosphorus Deoxidized (Low P) PONGSAN

UNS No. C10300

Features

C1030 is a high purity, low level residual phosphorus, deoxidized copper.

- High electrical and thermal conductivity.
- Good welding and soldering properties.
- Excellent hot and cold forming properties.

Typical Applications

- High Frequency Cable
- Tubular Bus
- Commutators

• Tubular Bus

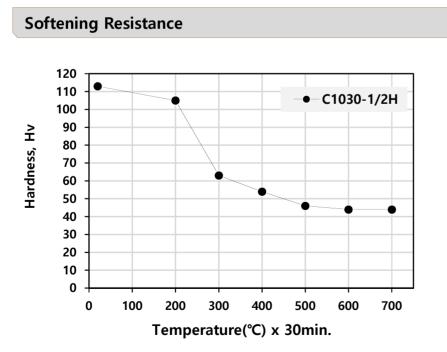
- Bus bars
- Switches

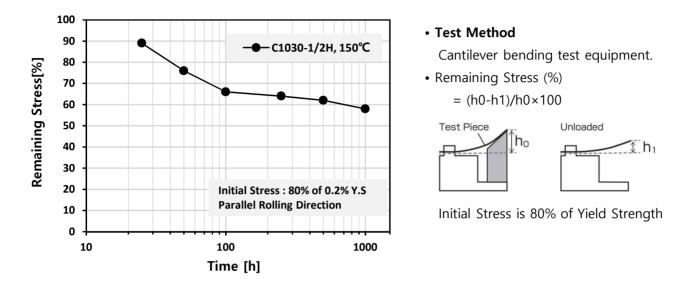
• Electrical Conductors

- Terminals
- Billet Mold Tube

Chemical (Composition (wt%)	Physical P
Cu	≥ 99.5	Melting Ter
Р	0.001~0.005	Specific Gra
		Thermal Co
		Coefficient o

Physical Properties		
Melting Temperature	°C	1083
Specific Gravity	-	8.94
Thermal Conductivity	W/(m⋅K)	386
Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.6
Modulus of Elasticity	GPa	117
Poisson's Ratio	-	0.33
Electrical Conductivity	%IACS	99


· ··


Mechanical Properties					
Temper		0	1/2H		
Tensile Strength	MPa	≥196	294-363		
Elongation	%	≥33	≥4		
Hardness	Ηv	45~55	100-120		
0.2% Yield Strength	n MPa	-	-		

C1030 Phosphorus Deoxidized (Low P) PONGSAN

Bending Properties

r/t (Minimum Bending Radius / thickness)				
т	emper	0	1/2H	
90 ⁰	Good way	0.0	0.0	
50	Bad way	0.0	0.0	
180 ⁰	Good way	0.0	0.5	
100	Bad way	0.0	0.5	
•	ckness ≤0.5mm	Bending Direction	on	
• Test sam	ple width 10mm	A : Good Way (Transverse t B : Bad Way (Parallel to R	Ron	

Corrosion Resistance

Resistant to : industrial atmosphere, industrial and drinking water, pure water vapour, non oxidizing acids, alkalis, neutral saline solutions.

Not resistant to : oxidizing acids, hydrous ammonia and halogenated gases, hydrogen sulfide, seawater, especially with high flow rates.

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Excellent
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended
Brazing	Excellent		

C1220 Phosphorus Deoxidized (High P) PONGSAN

UNS No. C12200

Features

C1220 is a phosphorus-deoxidized copper with a limited, high amount of residual Phosphorus, high electrical and thermal conductivity.

- Excellent welding and soldering properties.
- Excellent hot and cold forming properties.

Typical Applications

Radiators Switches

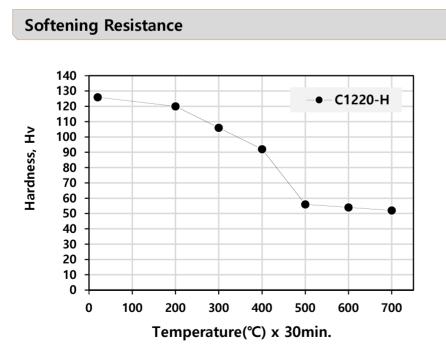
Gaskets

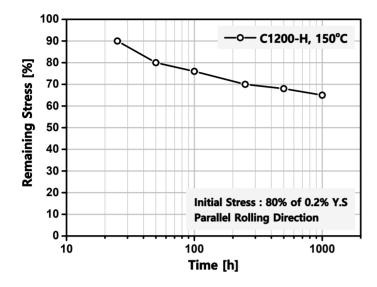
• Rotating Bands

• Marine Oil Coolers

- Connectors
 - Heat Exchanger Shells

 Casting) Molds
-----------------------------	---------

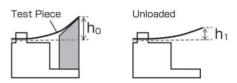

Chemical C	omposition (wt%)	Physical Properties		
Cu	≥ 99.9	Melting Temperature	°C	1083
Р	0.015~0.040	Specific Gravity	-	8.94
		Thermal Conductivity	W/(m⋅K)	339
		Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.6
		Modulus of Elasticity	GPa	117
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	85


Mechanical Properties					
Temper		0	1/4H	1/2H	н
Tensile Strength	MPa	≥195	215-285	235-315	≥275
Elongation	%	≥35	≥25	≥15	-
Hardness	Ηv	-	55-100	75-120	≥80
0.2% Yield Strength	MPa	-	-	-	-

C1220 Phosphorus Deoxidized (High P) PONGSAN

Bending Properties

r/t (Minimum Bending Radius / thickness)					
т	emper	ο	1/4H	1/2H	н
90 ⁰	Good way	0.0	0.0	0.0	0.0
90	Bad way	0.0	0.0	0.0	0.0
180 ⁰	Good way	0.0	0.0	0.5	1.0
100	Bad way	0.0	0.0	0.5	1.0
• Strip thi	ckness ≤0.5mm	E	Bending Directio	on 🛌	_
• Test sam	ple width 10mm		A : Good Way (Transverse t B : Bad Way (Parallel to R		irection [RD]



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Resistant to : industrial atmosphere, industrial and drinking water, pure water vapour, non oxidizing acids, alkalis, neutral saline solutions.

Not resistant to : oxidizing acids, hydrous ammonia and halogenated gases, hydrogen sulfide, seawater, especially with high flow rates.

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Excellent
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended
Brazing	Excellent		

C2100 Red Brass (RB1)

PODNGS/

UNS No. C21000

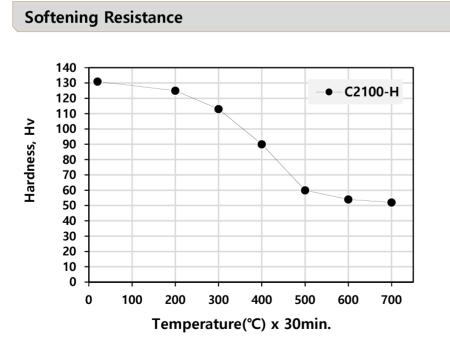
Features

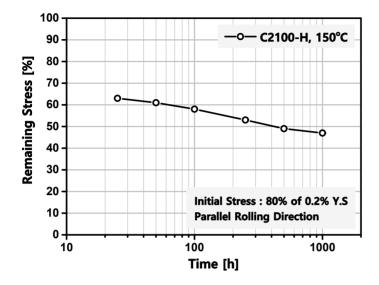
C2100 is low-cost alloy which is often selected to engineers for applications including coin, connectors, fuse caps. The combination of middle conductivity and improved strength make C2100 a valuable option for electrical applications.

- High corrosion resistance in atmosphere, fresh water and seawater
- Good plasticity

Typical Applications

- Coin
- Connector
- Bullet Jackets

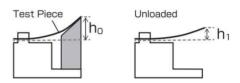

- Rotor Bars, Ac Motors
- Jewelry
- Fuse Caps


Chemical Cor	Chemical Composition			
Cu	94-96			
Zn	Balance			
Pb	≤0.05			
Fe	≤0.05			

Physical Properties		
Melting Temperature	°C	1066
Specific Gravity	-	8.86
Thermal Conductivity	W/(m⋅K)	234
Coefficient of Thermal Expansion	10 ⁻⁶ /K	18.0
Modulus of Elasticity	GPa	117
Poisson's Ratio	-	0.33
Electrical Conductivity	%IACS	56

Mechanical Properties					
Temper		1/4H	1/2H	н	
Tensile Strength	MPa	225-305	265-345	≥340	
Elongation	%	≥23	≥18	-	
Hardness	Hv	45-75	75-110	≥110	
0.2% Yield Strength	MPa	≤130	≥200	≥280	

r/t (Minimu	r/t (Minimum Bending Radius / thickness)					
Т	emper	1/4H	1/2H	н		
90 ⁰	Good way	0.0	0.0	0.5		
90	Bad way	0.0	0.0	1.0		
180 ⁰	Good way	0.0	0.0	1.5		
100	Bad way	0.0	0.0	2.0		
Strip thickn		Bending [Direction	\sim		
• Test sample	e width 10mm	B : Bad V	sverse to RD)	A B Ding Direction [RD]		



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C2100 has good resistance to stress corrosion cracking and largely resistant to industrial atmosphere but not resistant to oxidizing acids.

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good
Capacity for Being Hot Formed	Good	Gas Shielded Arc Welding	Good
Soldering	Excellent	Coated Metal Arc Welding	Not recommended
Brazing	Excellent		

C2200 Red Brass (RB2)

UNS No. C22000

Features

C2200 alloy derives its name from its rich bronze color. It offers a unique properties that make it excellent for applications requiring resistance to corrosion. C2200 offers a unique set of properties that make it great for applications requiring resistance to corrosion.

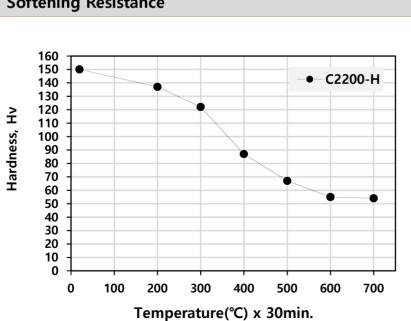
- Unique color
- Good resistance to air, water

Typical Applications

- Gaskets
- Ball Point Pens
- Compacts

- Rotor Bar AC Motors
- Cable Wrap

- Chain Links
- Costume Jewelry


Chemical Cor	mposition	(wt%)
Cu	89-91	
Zn	Balance	
Pb	≤0.05	
Fe	≤0.05	

Physical Properties		
Melting Temperature	°C	1043
Specific Gravity	-	8.8
Thermal Conductivity	W/(m⋅K)	189
Coefficient of Thermal Expansion	10 ⁻⁶ /K	18.4
Modulus of Elasticity	GPa	117
Poisson's Ratio	-	0.33
Electrical Conductivity	%IACS	44

Mechanical Properties					
Temper		1/4H	1/2H	н	
Tensile Strength	MPa	255-335	285-365	≥350	
Elongation	%	≥25	≥20	-	
Hardness	Hv	50-80	80-110	≥110	
0.2% Yield Strength	MPa	≤140	≥200	≥290	

POONGSAN

r/t (Minimu	r/t (Minimum Bending Radius / thickness)					
Т	emper	1/4H	1/2H	н		
90 ⁰	Good way	0.0	0.0	0.5		
90	Bad way	0.0	0.0	1.0		
180 ⁰	Good way	0.0	0.5	2.5		
100	Bad way	0.0	0.5	2.0		
-	ness ≤0.5mm	Bending I	Direction	\sim		
• Test sample	e width 10mm	B: Bad	sverse to RD)	A B Ding Direction [RD]		

Softening Resistance

0

C

100

Time [h]

100

90

80

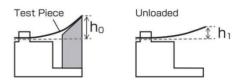
70

60

50

40 30 20

10-


0+ 10

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - = (h0-h1)/h0×100

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Good resistance to : fresh water, neutral or alkaline saline solutions, organic compounds Not resistant to : acids, hydrous sulphur compounds, Low sensitivity to stress corrosion cracking

-o- C2200-H 150°C

ò

1000

ò

Initial Stress: 80% of 0.2% Y.S

Parallel Rolling Direction

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good
Capacity for Being Hot Formed	Good	Gas Shielded Arc Welding	Good
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended
Brazing	Excellent		

C2300 Red Brass (RB3)

UNS No. C23000

Features

C2300 has highly resistant to stress corrosion cracking. It is commonly know is a choice for a wide range of applications. This material also has middle strength and is readily formed making it great for many industrial applications.

- Good corrosion resistance
- Good Formability

Typical Applications

- Badges
- Fire Extinguisher Cases
- Pump lines

•	Zippers	
---	---------	--

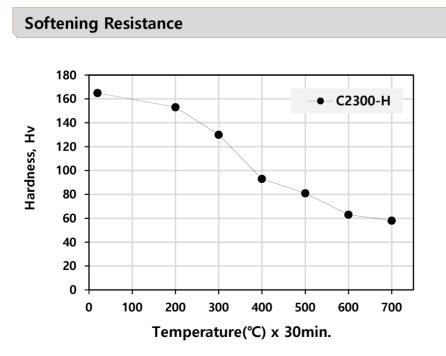
Sockets

• Pipe Nipples

- •
- Heat Exchangers

• Rotor Bars, AC motors

• Radiator Cores


Chemical Co	mposition	(wt%)
Cu	84-86	
Zn	Balance	9
Pb	≤0.05	
Fe	≤0.05	

Physical Properties		
Melting Temperature	°C	1027
Specific Gravity	-	8.75
Thermal Conductivity	W/(m⋅K)	159
Coefficient of Thermal Expansion	10 ⁻⁶ /K	18.7
Modulus of Elasticity	GPa	117
Poisson's Ratio	-	0.33
Electrical Conductivity	%IACS	37

Mechanical Properties 1/4H 1/2H н Temper **Tensile Strength** MPa 275-355 305-380 ≥355 **Elongation** % ≥28 ≥23 _ Hardness 55-85 85-115 Ηv ≥115 0.2% Yield Strength MPa <170 ≥150 >250

POONGSAN

r/t (Minimu	r/t (Minimum Bending Radius / thickness)					
т	emper	1/4H	1/2H	н		
90 ⁰	Good way	0.0	0.0	1.0		
90	Bad way	0.0	0.5	1.5		
180 ⁰	Good way	0.5	1.0	3.5		
180	Bad way	0.5	2.0	5.0		
• Strip thickn		Bending [Bending Direction			
• Test sample width 10mm		B: Bad	sverse to RD)	A B ling Direction [RD]		

0

100

90

80

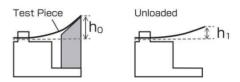
70

60

50

40 30 20

10-


0+ 10

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - = (h0-h1)/h0×100

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Good resistance to : fresh water, neutral or alkaline saline solutions, organic compounds Not resistant to : acids, hydrous sulphur compounds Low sensitivity to stress corrosion cracking

-o- C2300-H, 150°C

ò

1000

ò

Initial Stress: 80% of 0.2% Y.S

Parallel Rolling Direction

100

Time [h]

Fatigue Strength

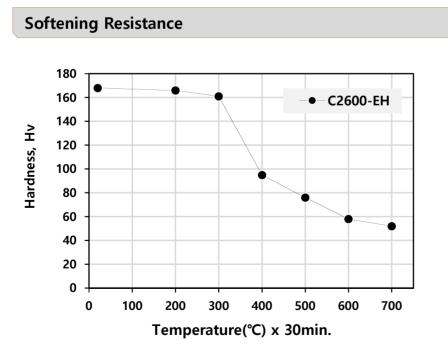
Fabrication Properties				
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Good	Gas Shielded Arc Welding	Good	
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended	
Brazing	Excellent			

C2600 Brass (B1)

UNS No. C26000

Features

C2600 cartridge have excellent workability. These alloys are usually cold formed and machined.


- Good formability
- Good hot forming

Typical Applications			
Terminal connectors	• Fasteners (Pins, Rivets)	Radiator	
Ammunition cartridge cases			

Chemical Co	mposition (wt%)	Physical Properties		
Cu	68.5-71.5	Melting Temperature	°C	954
Zn	Balance	Specific Gravity	-	8.53
Pb	≤0.05	Thermal Conductivity	W/(m⋅K)	121
Fe	≤0.05	Coefficient of Thermal Expansion	10 ⁻⁶ /K	20.0
		Modulus of Elasticity	GPa	110
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	28

Mechanical Properties					
Temper		1/2H	н	EH	
Tensile Strength	MPa	355-450	410-540	520-620	
Elongation	%	≥23	≥20	≥6	
Hardness	Hv	85-145	140-160	145-200	
0.2% Yield Strength	МРа	170-260	260-430	430-480	

r/t (Minimum Bending Radius / thickness)					
Т	emper	1/2H	н	EH	
90 ⁰	Good way	0.0	0.0	0.0	
90	Bad way	0.0	1.0	1.0	
180 ⁰	Good way	0.0	0.0	-	
100	Bad way	0.0	0.5	2.5	
•	ess ≤0.5mm	Bending I	Direction	~	
• Test sample width 10mm		B: Bad	sverse to RD)	A B Rolling Direction [RD]	

0.

100

90

80

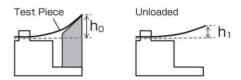
70

60

50

40 30 20

10-


0+ 10

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Excellent : cryogenic, room temperatures, aluminum hydroxide, barium carbonate, lime, magnesium hydroxide, atmosphere (Rural), carbon tetrachloride Fair : potassium hydroxide, sodium bicarbonate, sodium hydroxide, ethyl chloride, fatty acid

-o- C2600-H 150°C

Initial Stress: 80% of 0.2% Y.S

Parallel Rolling Direction

100

Time [h]

'n

1000

Fatigue Strength

Fabrication Properties				
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Fair	Gas Shielded Arc Welding	Good	
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended	
Brazing	Excellent			

C2680 Brass (BA)

UNS No. C26800

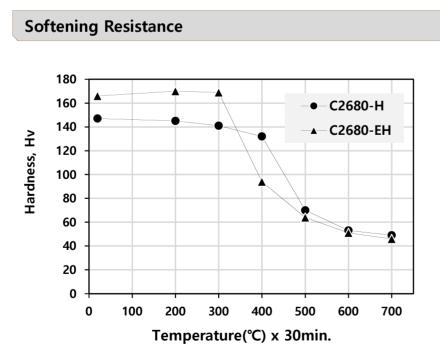
Features

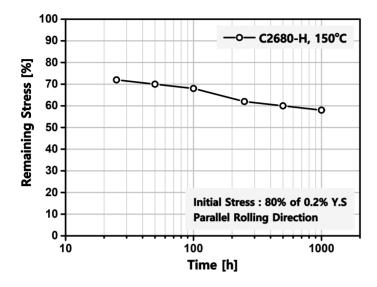
C2680 has combination of excellent cold forming properties with mechanical strength.

It also has good hot forming properties, excellent soldering and brazing properties.

- · Good formability, hot forming
- Excellent soldering, brazing

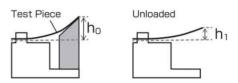
Typical Applications	S		
Connector	Switch	Radiator	


PONGSA


Chemical Co	mposition (wt%)	Physical Properties		
Cu	64-68	Melting Temperature	°C	932
Zn	Balance	Specific Gravity	-	8.47
Pb	≤0.05	Thermal Conductivity	W/(m⋅K)	116
Fe	≤0.05	Coefficient of Thermal Expansion	10⁻⁵/K	20.3
		Modulus of Elasticity	GPa	103
		Poisson's Ratio	-	0.35
		Electrical Conductivity	%IACS	27

Mechanical Properties					
Temper		1/2H	н	EH	
Tensile Strength	MPa	355-450	420-500	≥500	
Elongation	%	≥23	6	3	
Hardness	Hv	85-125	125-155	≥155	
0.2% Yield Strength	MPa	170	300	450	

r/t (Minimum Bending Radius / thickness)				
т	Temper		н	EH
90 ⁰	Good way	0.0	0.0	0.5
50	Bad way	0.0	0.0	0.5
180 ⁰	Good way	0.0	-	-
	Bad way	0.0	-	-
-	• Strip thickness ≤0.5mm		Direction	\sum
• Test sample width 10mm		B: Bad	sverse to RD)	A B Rolling Direction [RD]



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Excellent - water, water vapor, different saline solutions Fair - acids, hydrous sulphur components, hydrous ammonia in non-stress-relieved condition

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good
Capacity for Being Hot Formed	Poor	Gas Shielded Arc Welding	Fair
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended
Brazing	Excellent		

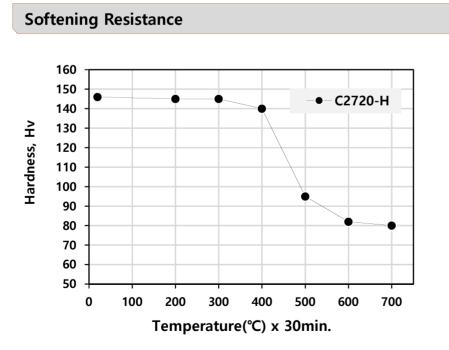
C2720 Brass (B2)

PODNGSAN

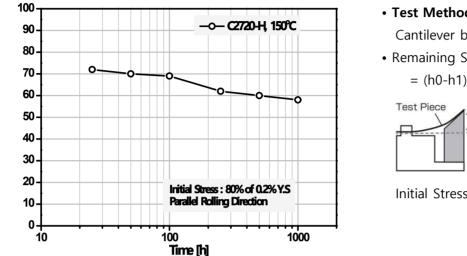
UNS No. C27200

Features

C2720 has good corrosion resistance and formability which suitable for fasteners, cold headed parts or heat exchanger shells.

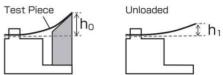

- Good corrosion resistance
- Good Formability

Typical Applications			
Connector	• Switch	Radiator	


Chemical Composition (wt%)		Physical Properties		, ,
Cu	62-64	Melting Temperature	°C	916
Zn	Balance	Specific Gravity	-	8.44
Pb	≤0.07	Thermal Conductivity	W/(m⋅K)	116
Fe	≤0.07	Coefficient of Thermal Expansion	10 ⁻⁶ /K	20.5
		Modulus of Elasticity	GPa	103
		Poisson's Ratio	-	0.35
		Electrical Conductivity	%IACS	27

Mechanical Properties					
Temper		1/4H	1/2H	н	
Tensile Strength	MPa	325-420	355-440	≥410	
Elongation	%	≥30	≥28	8	
Hardness	Hv	75-125	95-125	120-155	
0.2% Yield Strength	MPa	≤170	170	300	

r/t (Minimum Bending Radius / thickness)				
т	emper	1/4H	1/2H	н
90 ⁰	Good way	0.0	0.0	0.0
90	Bad way	0.0	0.0	0.0
180 ⁰	Good way	0.0	0.0	-
100	Bad way	0.0	0.0	-
•	ness ≤0.5mm	Bending [Direction	\sim
• Test sample width 10mm		B : Bad V	sverse to RD)	A B Dilling Direction [RD]



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Good - water, water vapor, saline solutions, organic liquids, atmosphere Fair - acids, hydrous sulphur components

Fatigue Strength

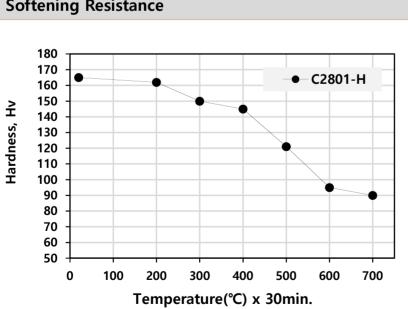
Fabrication Properties				
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Good	Gas Shielded Arc Welding	Fair	
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended	
Brazing	Excellent			

C2801 Brass (B3)

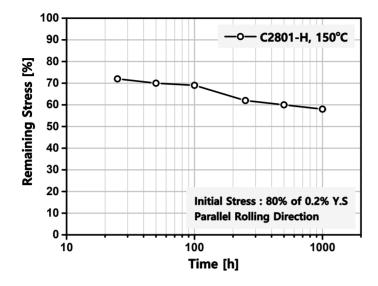
UNS No. C28000

Features

C2801 is a kind of Muntz Metal. Muntz Metal= 60% copper + 40% Zinc + small amount of iron It has high hot formability and strength but low ductility.

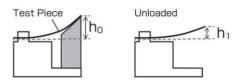

- Good hot forming ability
- High strength

Typical Applications	5		
Connector	Switch	• Keys	


Chemical Co	mposition (wt%)	Physical Properties		
Cu	59-62	Melting Temperature	°C	904
Zn	Balance	Specific Gravity	-	8.39
Pb	≤0.10	Thermal Conductivity	W/(m⋅K)	123
Fe	≤0.07	Coefficient of Thermal Expansion	10 ⁻⁶ /K	20.9
		Modulus of Elasticity	GPa	103
		Poisson's Ratio	-	0.35
		Electrical Conductivity	%IACS	28

Mechanical Properties					
Temper		0	1/2H	н	
Tensile Strength	МРа	340-420	420-480	≥470	
Elongation	%	33	15	8	
Hardness	Hv	85-115	110-140	≥140	
0.2% Yield Strength	MPa	≤240	≥200	≥390	

r/t (Minimum Bending Radius / thickness)				
T	emper	0	1/2H	н
90 ⁰	Good way	0.0	0.0	0.0
90	Bad way	0.0	0.0	0.0
180 ⁰	Good way	0.0	0.0	-
100	Bad way	0.0	0.0	-
•	ness ≤0.5mm	Bending [Direction	\sim
• Test sample width 10mm		B : Bad V	sverse to RD)	A B Diling Direction [RD]


Softening Resistance

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

Excellent - aluminum hydroxide, Lime, dry carbon tetrachloride, hydrogen, oxygen Fair - fatty acid, potassium hydroxide, sodium bicarbonate, ethyl chloride, organic acid 'Dezincification' and 'Stress Corrosion Cracking(SCC)' may occur.

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Fair	Oxyacetylene Welding	Good
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Fair
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended
Brazing	Excellent		

C5111 Phosphor Bronze (PB1A)

UNS No. C51100

Features

C5111 offers high strength and ductility, and excellent spring characteristics. It also has excellent resistance to corrosion and stress relief. Good soldering and brazing characteristics. It is suitable for applications requiring both strength and conductivity, and enables miniaturization of connectors. • High strength and good corrosion resistance

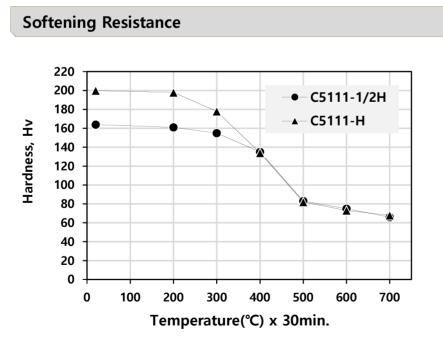
Typical Applications

- Connectors
- Bridge Bearing Plates
- Lock Washers

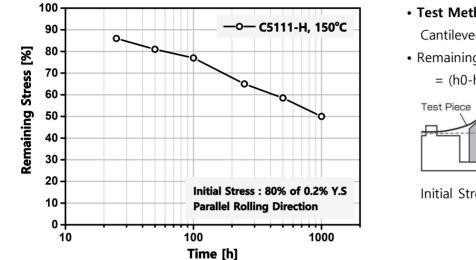
•	Fuse	Clips	

- Switch Parts
- Fasteners

- Terminals
- Springs

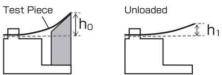

Physical Propertie	omposition (wt%)	Chemical Co
Melting Temperature	Balance	Cu
Specific Gravity	3.5-4.9	Sn
Thermal Conductivity	0.03-0.35	Р
Coefficient of Therma		

Physical Properties		
Melting Temperature	°C	1063
Specific Gravity	-	8.86
Thermal Conductivity	W/(m⋅K)	84
Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.8
Modulus of Elasticity	GPa	110
Poisson's Ratio	-	0.33
Electrical Conductivity	%IACS	20


Mechanical Properties						
Temper		1/2H	Н	EH		
Tensile Strength	MPa	410-510	490-590	≥570		
Elongation	%	≥12	≥7	≥3		
Hardness	Hv	120-180	150-200	≥170		
0.2% Yield Strength	MPa	≥350	≥440	≥520		

Bending Properties

r/t (Minimum Bending Radius / thickness)						
Temper		1/4H	н	EH		
90 ⁰	Good way	0	0	0		
90	Bad way	0	1.0	2.5		
180 ⁰	Good way	0	0.5	1.5		
	Bad way	0.5	2.0	3.5		
• Strip thickness ≤0.5mm		Bending [Direction	\sum		
• Test sample width 10mm		B: Bad	sverse to RD)	A B Rolling Direction [RD]		



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C5111 has good resistance in seawater and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties				
Excellent	Oxyacetylene Welding	Fair		
Poor	Gas Shielded Arc Welding	Good		
Excellent	Coated Metal Arc Welding	Fair		
Excellent				
	Poor Excellent	PoorGas Shielded Arc WeldingExcellentCoated Metal Arc Welding		

UNS No. C51000

Features

C5102 offers high strength and ductility, and excellent spring characteristics. It also has excellent resistance to corrosion and stress relief. Good soldering and brazing characteristics. C5102 alloy is widely used phosphor bronze, and its applications are connectors, connector springs, springs and electrical and mechanical parts.

• High strength and good corrosion resistance

Typical Applications

- Connectors
- Bridge Bearing Plates
- Lock Washers

 Fuse 	Clips
--------------------------	-------

- Switch Parts
- Fasteners

Ге	rm	II	ia	IS

°C

_

W/(m⋅K)

10⁻⁶/K

GPa

_

%IACS

1049

8.86

69

17.8

110

0.33

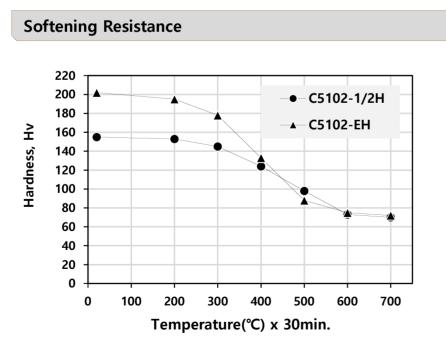
15

• Springs

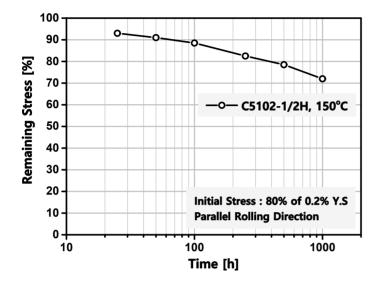
Chemical Co	omposition (wt%)	Physical Properties
Cu	Balance	Melting Temperature
Sn	4.2-5.8	Specific Gravity
Р	0.03-0.35	Thermal Conductivity
		Coefficient of Thermal Expansion
		Modulus of Elasticity

Mechanical Properties

Temper		1/2H	н	EH
Tensile Strength	MPa	470-570	570-665	620-710
Elongation	%	≥15	≥7	≥4
Hardness	Hv	130-190	170-220	190-230
0.2% Yield Strength	MPa	≥420	≥500	≥570

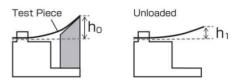

Poisson's Ratio

Electrical Conductivity



Bending Properties

r/t (Minimum Bending Radius / thickness)						
Temper		1/2H	н	EH		
90 ⁰	Good way	0	0	0		
90	Bad way	0	1.0	2.0		
180 ⁰	Good way	0	0.5	1.0		
	Bad way	1.0	2.0	3.0		
• Strip thickness ≤0.5mm		Bending Direction				
• Test sample width 10mm		B: Bad	sverse to RD)	A B Olling Direction [RD]		


Stress Relaxation Resistance

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C5102 has good resistance in seawater and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties				
Excellent	Oxyacetylene Welding	Fair		
Poor	Gas Shielded Arc Welding	Cood		
Excellent	Coated Metal Arc Welding	Fair		
Excellent				
	Poor Excellent	PoorGas Shielded Arc WeldingExcellentCoated Metal Arc Welding		

C5191 Phosphor Bronze (PB2)

UNS No. C51900

Features

C5191 offers high strength and ductility, and excellent spring characteristics. It also has excellent resistance to corrosion and stress relief. Good soldering and brazing characteristics. Due to its high tin content, it has high strength and excellent spring properties it is Used for all kinds of springs.

PONGS

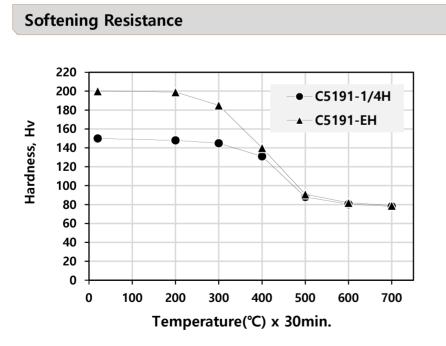
• High strength and good corrosion resistance

Typical Applications

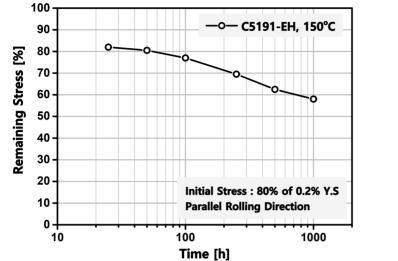
• Connectors

• Electrical Flexing Contact Blades

- Terminals
- Wire Brushes

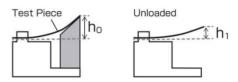

•	Switch	Parts
•	Fastene	ers

Chemical Composition (wt%) Physical Properties		Physical Properties		
Cu	Balance	Melting Temperature	°C	1045
Sn	5.0-7.0	Specific Gravity	-	8.83
Ρ	0.03-0.35	Thermal Conductivity	W/(m⋅K)	67
		Coefficient of Thermal Expansion	10⁻ ⁶ /K	18
		Modulus of Elasticity	GPa	105
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	13


Mechanical Properties						
Temper		1/2H	н	EH		
Tensile Strength	MPa	490-610	590-685	635-720		
Elongation	%	≥20	≥8	≥5		
Hardness	Hv	150-205	180-230	200-240		
0.2% Yield Strength	MPa	≥450	≥520	≥590		

Bending Properties

r/t (Minimum Bending Radius / thickness)						
Temper		1/2H	н	EH		
90 ⁰	Good way	0	0	0		
90	Bad way	0	0	1.0		
180 ⁰	Good way	0.5	1.0	2.0		
	Bad way	1.5	2.0	3.5		
• Strip thickness ≤0.5mm		Bending [Direction	\sum		
• Test sample width 10mm		B : Bad V	sverse to RD)	A B Iling Direction [RD]		



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C5191 has good resistance in seawater and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties				
Excellent	Oxyacetylene Welding	Fair		
Poor	Gas Shielded Arc Welding	Good		
Excellent	Coated Metal Arc Welding	Poor		
Excellent				
	Poor Excellent	PoorGas Shielded Arc WeldingExcellentCoated Metal Arc Welding		

C5212 Phosphor Bronze (PB3)

UNS No. C52100

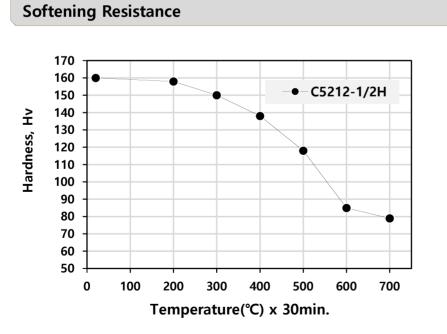
Features

C5212 is a hardened copper alloy containing 8% tin. It has high strength and springiness compared with low content bronze. The alloy also has excellent corrosion resistance and can easily be soldered. Applications include electrical components and connectors, springs, bushings and bearings, and electrical and mechanical engineering.

PONGS/

• High strength and high elasticity

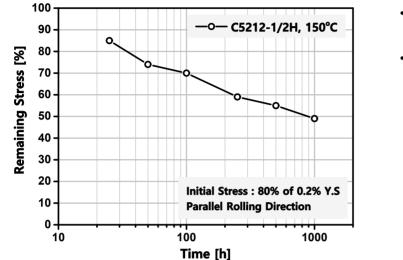
Typical Applications					
ConnectorContact Springs	SwitchSlide bearings	Relay spring			
1 0	J				


Chemical Composition (wt%)		Physical Properties				
Cu	Balance	Melting Temperature	°C	1027		
Sn	7.0-9.0	Specific Gravity	-	8.8		
Р	0.03-0.35	Thermal Conductivity	W/(m⋅K)	62		
Zn	≤0.2	Coefficient of Thermal Expansion	10 ⁻⁶ /K	18.2		
Pb	≤0.02	Modulus of Elasticity	GPa	110		
Fe	≤0.1	Poisson's Ratio	-	0.33		
Cu+Sn+P	≥99.5	Electrical Conductivity	%IACS	13		

Mechanical Properties

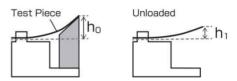
Temper		0	1/4H	1/2H	н	EH
Tensile Strength	MPa	≥345	390-510	490-610	590-705	≥685
Elongation	%	≥45	≥40	≥30	≥12	≥5
Hardness	Hv	-	100-160	150-205	180-235	≥210
0.2% Yield Strength	MPa	-	320-480	410-530	520-635	≥645

Bending Properties


r/t (Minimum Bending Radius / thickness)				
т	emper	1/2H	н	EH
90 ⁰	Good way	0.0	0.5	1.0
90°	Bad way	0.0	1.5	2.5
180 ⁰	Good way	0.0	2.0	3.0
100	Bad way	0.0	3.0	4.0
-	ness ≤0.5mm	Bending [Direction	\sum
• Test sample width 10mm		B: Bad	sverse to RD)	Olling Direction [RD]

 Vickers hardness after heat treatment (30minute). The diagram shows typical values.

POONGSAN



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C5212 is a corrosion-resistant alloy for seawater and has corrosion resistance not only to the general atmosphere but also to marine air, seawater, non-oxidizing acid, alkaline solution and neutral salt solution.

Fatigue Strength

Fabrication Properties				
Excellent	Oxyacetylene Welding	Fair		
Excellent	Gas Shielded Arc Welding	Good		
Excellent	Coated Metal Arc Welding	Fair		
Excellent				
	Excellent	ExcellentGas Shielded Arc WeldingExcellentCoated Metal Arc Welding		

C5210 Phosphor Bronze (Spring)

UNS No. C52100

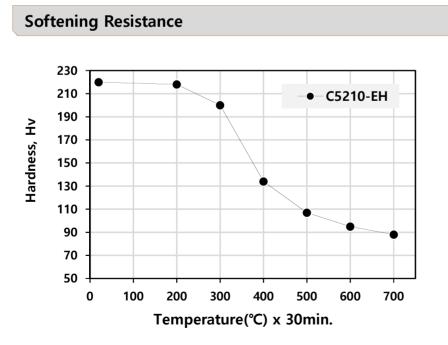
Features

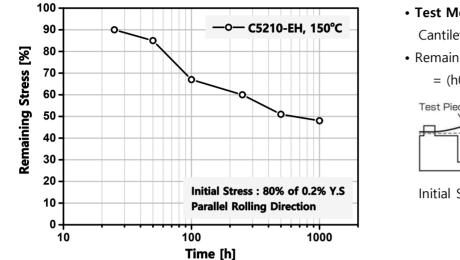
C5210 is a hardened copper alloy containing 8% tin. It has high strength and springiness compared with low content bronze. The alloy also has excellent corrosion resistance and can easily be soldered. Applications include electrical components and connectors, springs, bushings and bearings, and electrical and mechanical engineering.

• High strength and high elasticity

Typical Applications			
Connector	Automotive switch	Relay spring	

Chemical Con	nposition (wt%)	Physical Properties			
Cu	Balance	Melting Temperature	°C	1027	
Sn	7.0-9.0	Specific Gravity	-	8.8	
Р	0.03-0.35	Thermal Conductivity	W/(m⋅K)	62	
Zn	≤0.2	Coefficient of Thermal Expansion	10 ⁻⁶ /K	18.2	
Pb	≤0.02	Modulus of Elasticity	GPa	110	
Fe	≤0.1	Poisson's Ratio	-	0.33	
Cu+Sn+P	≥99.7	Electrical Conductivity	%IACS	13	

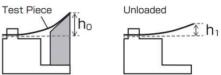

Mechanical Properties


Temper		1/2H	н	EH	SH	ESH	XSH
Tensile Strength	MPa	470-610	590-705	685-785	735-835	770-885	835-1000
Elongation	%	≥27	≥20	≥11	≥9	≥5	≥1
Hardness	Ηv	140-205	185-225	210-260	230-270	245-285	-
0.2% Yield Strength	MPa	390-530	510-625	625-725	700-800	740-855	800-970

POONGSAN

Bending Properties

r/t (Minimum Bending Radius / thickness)				
т	emper	Н	EH	SH
90 ⁰	Good way	0.0	0.0	0.5
90	Bad way	0.0	0.5	2.0
180 ⁰	Good way	0.0	2.0	3.0
	Bad way	0.0	3.0	4.0
• Strip thickn		Bending I	Direction	\sim
• Test sample width 10mm		B: Bad	sverse to RD)	A B Uling Direction [RD]



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C5210 is a corrosion-resistant alloy for seawater and has corrosion resistance not only to the general atmosphere but also to marine air, seawater, non-oxidizing acid, alkaline solution and neutral salt solution.

Fatigue Strength

Fabrication Properties				
Excellent	Oxyacetylene Welding	Fair		
Excellent	Gas Shielded Arc Welding	Good		
Excellent	Coated Metal Arc Welding	Fair		
Excellent				
	Excellent	ExcellentGas Shielded Arc WeldingExcellentCoated Metal Arc Welding		

C5240 Phosphor Bronze (Super Spring) PONGSAN

UNS No. C52400

Features

C5240 is a hardened copper alloy containing 10% tin. It has high strength and springiness compared with low content bronze. The alloy also has excellent corrosion resistance and can easily be soldered.

- Good Solderability, and plating-ability
- High elasticity

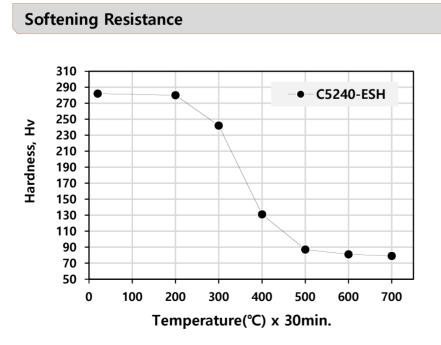
Typical Applications

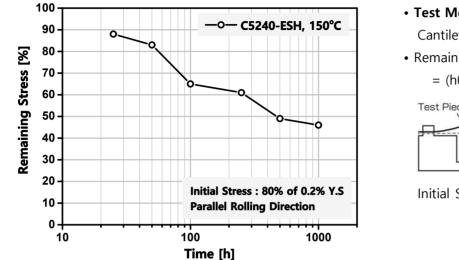
- Connector
- Bushings

• Spring Contacts

• Spring

 Bearings 	
------------------------------	--

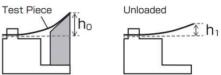

Chemical Co	omposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	999
Sn	9.0-11.0	Specific Gravity	-	8.78
Р	0.05-0.35	Thermal Conductivity	W/(m⋅K)	50
Zn	≤0.2	Coefficient of Thermal Expansion	10 ⁻⁶ /K	18.4
Pb	≤0.02	Modulus of Elasticity	GPa	110
Fe	≤0.1	Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	11


Mechanical Properties						
Temper		н	EH	SH	ESH	XSH
Tensile Strength	MPa	650-750	750-850	850-950	950-1050	1000-1200
Elongation	%	≥11	≥9	≥5	≥1	-
Hardness	Hv	200-240	230-270	250-290	270-310	≥290
0.2% Yield Strength	MPa	580-690	650-790	780-920	900-1030	950-1190

C5240 Phosphor Bronze (Super Spring) PONGSAN

Bending Properties

r/t (Minimu	r/t (Minimum Bending Radius / thickness)					
Т	emper	Н	EH	SH		
90 ⁰	Good way	0.0	0.0	1.0		
50	Bad way	0.0	1.0	3.0		
180 ⁰	Good way	1.0	2.0	-		
	Bad way	2.0	3.0	-		
-	• Strip thickness ≤0.5mm		Direction	\sum		
• Test sample width 10mm		B: Bad	sverse to RD)	A B Iling Direction [RD]		



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C5240 is a corrosion-resistant alloy for seawater and has corrosion resistance not only to the general atmosphere but also to marine air, seawater, non-oxidizing acid, alkaline solution and neutral salt solution.

Fatigue Strength

Fabrication Properties					
Excellent	Oxyacetylene Welding	Fair			
Poor	Gas Shielded Arc Welding	Good			
Excellent	Coated Metal Arc Welding	Fair			
Excellent					
	Poor Excellent	PoorGas Shielded Arc WeldingExcellentCoated Metal Arc Welding			

C7351 Nickel Silver (NS1)

POONGSAN

UNS No. C73500

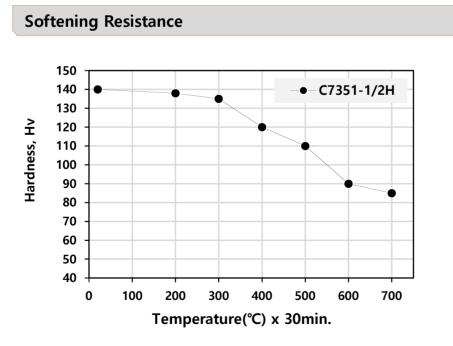
Features

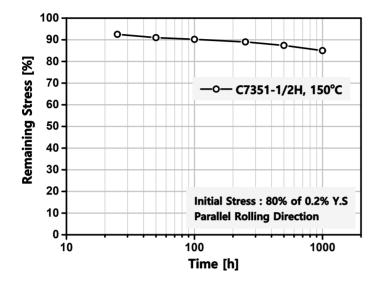
Nickel Silver is the generic name for any of the range of bright metal alloys composed of copper, nickel, and zinc. Nickel Silver alloys, sometimes called German Silver, derive their name from their bright silvery appearance although they contain no real silver. Nickel silver is an ideal alloy in the use of printed circuit board shielding due to its electrical conductivity and excellent solderability.

Typical Applications

- Electromagnetic shielding
- Deep drawing parts
- Coins

- Electric contacts
- Leaf spring for relays
- Security keys

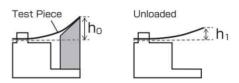

- Contact springs
- connector


Chemical Co	omposition (wt%)	Physical Properties		
Cu	70-75	Melting Temperature	°C	1135
Zn	Balance	Specific Gravity	-	8.8
Ni	16.5-19.5	Thermal Conductivity	W/(m⋅K)	36
Fe	≤0.25	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16
Mn	0-0.5	Modulus of Elasticity	GPa	124
Pb	≤0.03	Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	6.5

Mechanical Properties					
Temper		0	1/2H		
Tensile Strength	MPa	≥325	390-510		
Elongation	%	≥20	≥5		
Hardness	Hv	-	105-155		
0.2% Yield Strength	МРа	-	-		

Bending Properties

r/t (Minimum Bending Radius / thickness)					
Т	emper	0	1/2H		
90 ⁰	Good way	0.0	0.5		
90	Bad way	0.0	0.5		
180 ⁰	Good way	0.0	1.0		
100	Bad way	0.0	1.0		
Strip thickn		Bending Direction			
• Test sample	e width 10mm	A : Good Way (Transverse to RD B : Bad Way (Parallel to RD)	a) A B Rolling Direction [RD]		



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C7351 has good resistance to atmospheric influences, organic compound, neutral and alkaline saline solutions, but weak to oxidizing acids and hydrous ammonia.

Fatigue Strength

Fabrication Properties						
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good			
Capacity for Being Hot Formed	Poor	Gas Shielded Arc Welding	Fair			
Soldering	Excellent	Coated Metal Arc Welding	Nor Recommended			
Brazing	Excellent					

C7451 Nickel Silver (NS2)

UNS No. C74500

Features

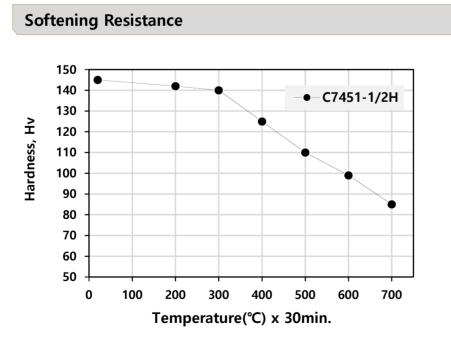
Nickel Silver is the generic name for any of the range of bright metal alloys composed of copper, nickel, and zinc. Nickel Silver alloys, sometimes called German Silver, derive their name from their bright silvery appearance although they contain no real silver. Nickel silver is an ideal alloy in the use of printed circuit board shielding due to its electrical conductivity and excellent solderability.

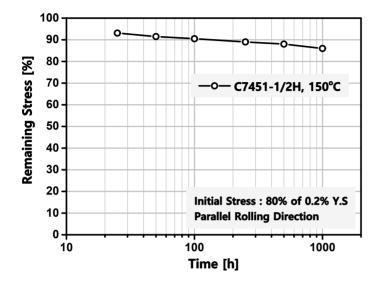
Typical Applications

- Electromagnetic shielding
- Deep drawing parts
- Coins

- Electric contacts
- Leaf spring for relays
- Security keys

- Contact springs
- connector

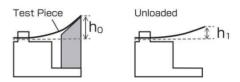

Chemical Composition (wt%)		Physical Properties		
Cu	63-67	Melting Temperature	°C	1021
Zn	Balance	Specific Gravity	-	8.69
Ni	8.5-11.0	Thermal Conductivity	W/(m⋅K)	45
Fe	≤0.25	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.4
Mn	0-0.5	Modulus of Elasticity	GPa	121
Pb	≤0.03	Poisson's Ratio	-	0.34
		Electrical Conductivity	%IACS	9


Mechanical Properties					
Temper		0	1/2H		
Tensile Strength	МРа	≥325	390-510		
Elongation	%	≥20	≥5		
Hardness	Hv	-	105-155		
0.2% Yield Strength	MPa	-	-		

POONGSAN

Bending Properties

r/t (Minimu	r/t (Minimum Bending Radius / thickness)						
T	emper	0	1/2H				
90 ⁰	Good way	0.0	0.5				
90	Bad way	0.0	0.5				
180 ⁰	Good way	0.0	1.0				
100	Bad way	0.0	1.0				
Strip thickr		Bending Direction					
• Test sampl	e width 10mm	A : Good Way (Transverse to RD B : Bad Way (Parallel to RD)) A B Rolling Direction [RD]				



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C7451 has good resistance to atmospheric influences, organic compound, neutral and alkaline saline solutions, but weak to oxidizing acids and hydrous ammonia.

Fatigue Strength

Fabrication Properties				
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Poor	Gas Shielded Arc Welding	Fair	
Soldering	Excellent	Coated Metal Arc Welding	Nor Recommended	
Brazing	Excellent			

C7521 Nickel Silver (NS3)

UNS No. C75200

Features

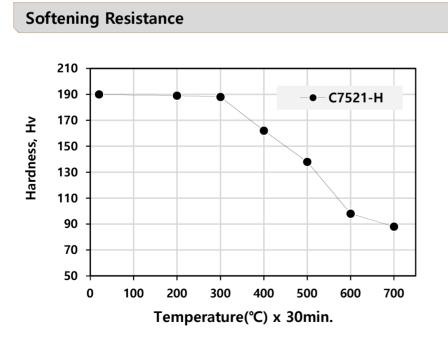
Nickel Silver is the generic name for any of the range of bright metal alloys composed of copper, nickel, and zinc. Nickel Silver alloys, sometimes called German Silver, derive their name from their bright silvery appearance although they contain no real silver. Nickel silver is an ideal alloy in the use of printed circuit board shielding due to its electrical conductivity and excellent solderability.

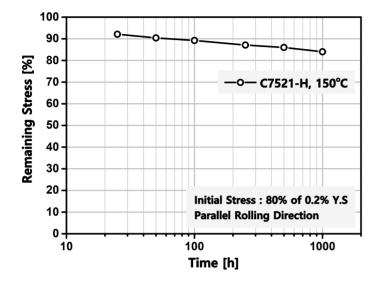
Typical Applications

- Electromagnetic shielding
- Deep drawing parts
- Coins

- Electric contacts
- Leaf spring for relays
- Security keys

- Contact springs
- connector

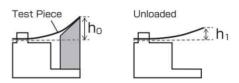

Chemical Co	omposition (wt%)	Physical Properties		
Cu	62.0-66.0	Melting Temperature	°C	1071
Zn	Balance	Specific Gravity	-	8.73
Ni	16.5-19.5	Thermal Conductivity	W/(m⋅K)	33
Fe	≤0.25	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.2
Mn	0-0.5	Modulus of Elasticity	GPa	124
Pb	≤0.03	Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	6


Mechanical Properties					
Temper		1/4H	1/2H	н	
Tensile Strength	MPa	400-495	455-550	510-595	
Elongation	%	≥ 24	≥ 14	≥ 8	
Hardness	Hv	130-160	150-180	170-210	
0.2% Yield Strength	MPa	≥ 180	≥ 330	≥ 475	

POONGSAN

Bending Properties

r/t (Minimum Bending Radius / thickness)					
Т	emper	1/4H	1/2H	н	
90 ⁰	Good way	0.0	0.5	1.0	
90	Bad way	0.0	0.5	1.0	
180 ⁰	Good way	0.0	1.0	2.0	
100	Bad way	0.0	1.0	2.0	
-	• Strip thickness ≤0.5mm		Direction	5	
• Test sample	est sample width 10mm		d Way Insverse to RD) Way Rojj Illel to RD)	A B Ving Direction [RD]	



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C7521 has good resistance to atmospheric influences, organic compound, neutral and alkaline saline solutions, but weak to oxidizing acids and hydrous ammonia.

Fatigue Strength

Fabrication Properties				
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Poor	Gas Shielded Arc Welding	Fair	
Soldering	Excellent	Coated Metal Arc Welding	Nor Recommended	
Brazing	Excellent			

C7701 Nickel Silver (Spring)

UNS No. C77000

Features

Nickel Silver is the generic name for any of the range of bright metal alloys composed of copper, nickel, and zinc. Nickel Silver alloys, sometimes called German Silver, derive their name from their bright silvery appearance although they contain no real silver. Nickel silver is an ideal alloy in the use of printed circuit board shielding due to its electrical conductivity and excellent solderability.

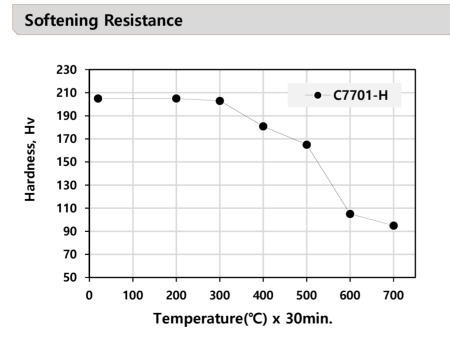
Typical Applications

- Electromagnetic shielding
- Deep drawing parts
- Coins

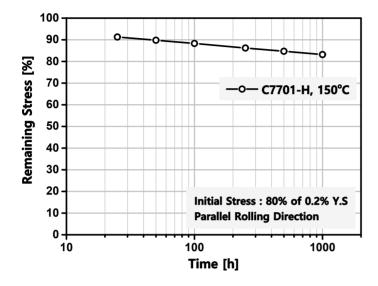
- Electric contacts
- Leaf spring for relays
- Security keys

Contact springs

PONGS

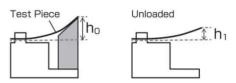

connector

Chemical Co	omposition (wt%)	Physical Properties		
Cu	54.0-58.0	Melting Temperature	°C	1043
Zn	Balance	Specific Gravity	-	8.70
Ni	16.5-19.5	Thermal Conductivity	W/(m⋅K)	32
Fe	≤ 0.25	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.7
Mn	0-0.5	Modulus of Elasticity	GPa	124
Pb	≤0.03	Poisson's Ratio	-	0.34
		Electrical Conductivity	%IACS	5.5


Mechanical Properties					
Temper		1/4H	1/2H	н	
Tensile Strength	MPa	470-540	540-630	600-700	
Elongation	%	≥ 11	≥ 5	≥ 2	
Hardness	Hv	135-180	170-200	190-220	
0.2% Yield Strength	MPa	≥ 280	≥ 450	≥ 550	

Bending Properties

r/t (Minimum Bending Radius / thickness)				
Т	emper	1/4H	1/2H	н
90 ⁰	Good way	0.0	1.0	1.5
901	Bad way	0.0	1.0	1.5
180 ⁰	Good way	0.5	1.5	2.0
100	Bad way	0.5	1.5	2.0
• Strip thickness ≤0.5mm		Bending I	Direction	\sim
• Test sample width 10mm		B: Bad	sverse to RD)	olling Direction [RD]


Stress Relaxation Resistance

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

C7701 has good resistance to atmospheric influences, organic compound, neutral and alkaline saline solutions, but weak to oxidizing acids and hydrous ammonia.

Fatigue Strength

Fabrication Properties				
Capacity for Being Cold Worked	Good	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Poor	Gas Shielded Arc Welding	Fair	
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended	
Brazing	Excellent			

P1240 Nickel Silver

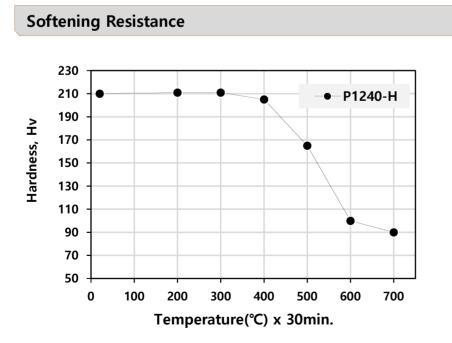
Features

Nickel Silver is the generic name for any of the range of bright metal alloys composed of copper, nickel, and zinc. Nickel Silver alloys, sometimes called German Silver, derive their name from their bright silvery appearance although they contain no real silver. Nickel silver is an ideal alloy in the use of printed circuit board shielding due to its electrical conductivity and excellent solderability.

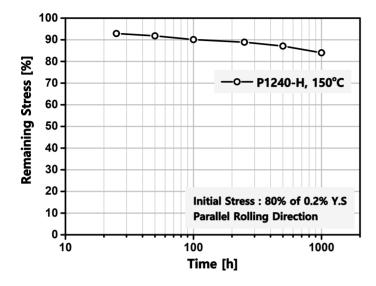
Typical Applications

- Security keys
- Electric contacts
- Coins

- Contact springs
- Leaf spring for relays

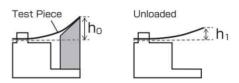

Chemical Co	omposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	980
Zn	35.0-39.0	Specific Gravity	-	8.54
Ni	9.0-13.0	Thermal Conductivity	W/(m⋅K)	38
Mn	0.20-0.40	Coefficient of Thermal Expansion	10 ⁻⁶ /K	18.1
Fe	≤0.30	Modulus of Elasticity	GPa	138
Pb	≤0.02	Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	7

Mechanical Properties					
Temper		1/4H	1/2H	н	
Tensile Strength	MPa	480-550	550-640	600-700	
Elongation	%	≥ 28	≥ 18	≥ 8	
Hardness	Hv	135-185	170-200	190-210	
0.2% Yield Strength	MPa	≥ 280	≥ 450	≥ 550	



Bending Properties

r/t (Minimum Bending Radius / thickness)				
т	emper	1/4H	1/2H	н
90 ⁰	Good way	0	0.5	1.0
90	Bad way	0	0.5	1.0
180 ⁰	Good way	-	-	-
	Bad way	-	-	-
-	• Strip thickness ≤0.5mm		Direction	\sim
• Test sample width 10mm		B: Bad	sverse to RD)	A B Dilling Direction [RD]


Stress Relaxation Resistance

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P1240 has good resistance to atmospheric influences, organic compound, neutral and alkaline saline solutions, but weak to oxidizing acids and hydrous ammonia.

Fatigue Strength

P144C

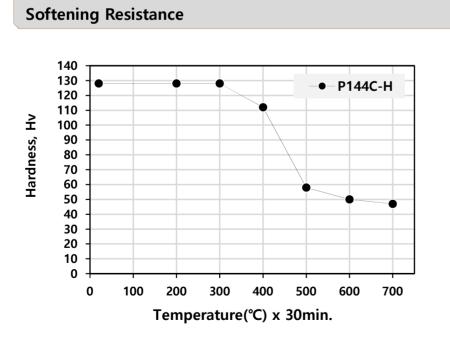
POONGSAN

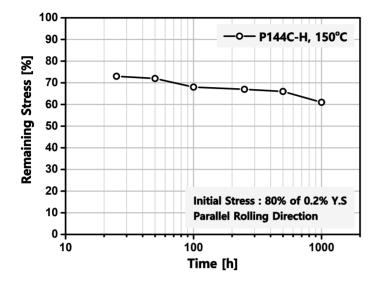
UNS No. C14410

Features

The P144C is an alloy with excellent electrical conductivity, excellent strength and corrosion resistance by adding a small amount of Sn and P

- Excellent electrical conductivity of 85%IACS
- Good strength and corrosion resistance

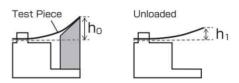

Typical Applications			
Lead FrameSwitches and Relays	ConnectorTerminals	• Relay	
, ,			


Chemical Composition (wt%) Physical Properties				
Cu	Balance	Melting Temperature	°C	1083
Sn	0.1-0.2	Specific Gravity	-	8.9
Р	0.005-0.02	Thermal Conductivity	W/(m⋅K)	360
		Coefficient of Thermal Expansion	10⁻ ⁶ /K	17.3
		Modulus of Elasticity	GPa	118
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	85

Mechanical Properties					
Temper		1/2H	н	EH	
Tensile Strength	MPa	245-345	275-400	345-440	
Elongation	%	≥10	≥2	-	
Hardness	Hv	60-120	90-125	100-135	
0.2% Yield Strength	MPa	200-315	235-360	305-400	

Bending Properties

r/t (Minimum Bending Radius / thickness)					
т	emper	1/2H	н	EH	
90 ⁰	Good way	0	0	1	
90*	Bad way	0	0	1.0	
180 ⁰	Good way	0	0.5	2	
	Bad way	0	1	2	
• Strip thickness ≤0.5mm		Bending [Direction	\sim	
• Test sample width 10mm		B : Bad \	sverse to RD)	Rolling Direction [RD]	



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P144C has good resistance in natural and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties			
Excellent	Oxyacetylene Welding	Good	
Good	Gas Shielded Arc Welding	Good	
Excellent	Coated Metal Arc Welding	Good	
Excellent			
	Good Excellent	GoodGas Shielded Arc WeldingExcellentCoated Metal Arc Welding	

P1806

POONGSAN

UNS No. C18060

Features

P1806 is a CuCrCoSi alloy that can be hardened by cold forming and by precipitation. This alloy provides a good balance of high electrical conductivity and good strength

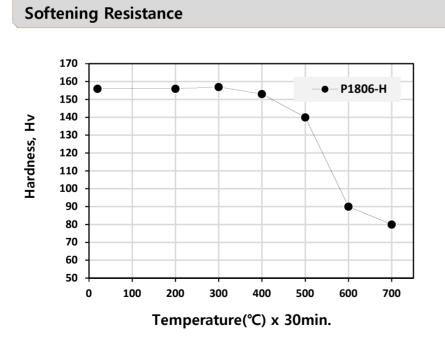
- Good electrical conductivity and strength
- High thermal softening resistance

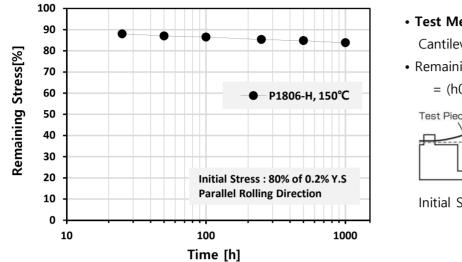
Typical Applications

- Lead frame
- Connector

• Automotive switch

• Shield can

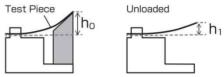

• Relay spring


Chemical Composition (wt%)				
Cu	Balance			
Cr	0.20-0.40			
Со	0.01-0.15			
Si	0.01-0.15			
Sn	≤ 0.10			

Physical Properties		
Melting Temperature	°C	1081
Specific Gravity	-	8.9
Thermal Conductivity	W/(m⋅K)	310
Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.9
Modulus of Elasticity	GPa	133
Poisson's Ratio	-	0.33
Electrical Conductivity	%IACS	80

Mechanical Properties					
Temper		1/2H	н	EH	
Tensile Strength	MPa	430-520	500-570	540-600	
Elongation	%	≥4	≥2	≥2	
Hardness	Hv	110-160	130-180	≥150	
0.2% Yield Strength	MPa	340-500	400-540	480-580	

r/t (Minimum Bending Radius / thickness)				
Temper		1/2H	н	EH
90 ⁰	Good way	0.0	0.5	1.0
90	Bad way	0.5	1.0	1.5
180 ⁰	Good way	0.5	1.0	1.5
	Bad way	1.0	2.0	3.0
-	ness ≤0.5mm	Bending [Direction	5
• Test sampl	e width 10mm	B: Bad	sverse to RD)	Rolling Direction [RD]



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P1806 has good resistance in natural and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Excellent	Oxyacetylene Welding	Good
Excellent	Gas Shielded Arc Welding	Not Recommended
Good	Coated Metal Arc Welding	Excellent
Good		
	Excellent	ExcellentGas Shielded Arc WeldingGoodCoated Metal Arc Welding

P102M

UNS No. C19015

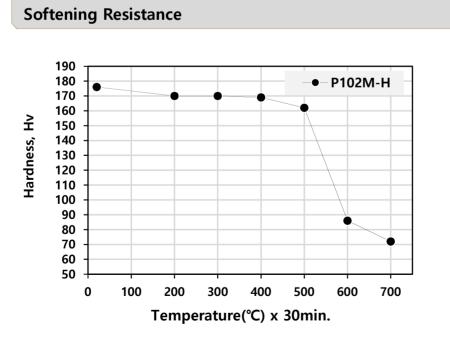
Features

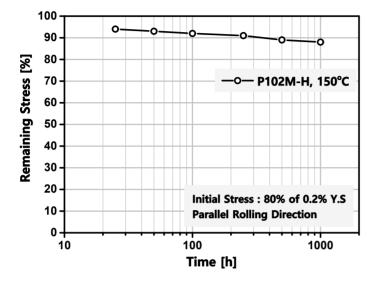
P102M is a typical precipitation-hardening type of copper alloy which incorporates an optimum mix of other elements such as Ni, Si, Mg and P. It has excellent mechanical properties and electrical conductivity.

- High strength and good conductivity
- High Thermal Softening Resistance

Typical Applications

- Connector
- Lead frame

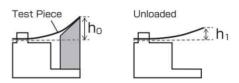

- Automotive switch
- Relay spring


٠	Shield	can	

Chemical Co	omposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1062
Ni	0.8-1.8	Specific Gravity	-	8.91
Si	0.15-0.35	Thermal Conductivity	W/(m⋅K)	258
Р	0.01-0.05	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.9
Mg	0.02-0.15	Modulus of Elasticity	GPa	128
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	50

Mechanical Properties					
Temper		1/2H	н	EH	SH
Tensile Strength	MPa	430-490	490-560	540-620	≥610
Elongation	%	≥10	≥8	≥6	≥5
Hardness	Ηv	125-150	135-180	150-190	≥160
0.2% Yield Strength	MPa	360	400	470	520

r/t (Minimu	ım Bending Radius /	thickness)			
Т	emper	1/2H	н	EH	SH
90 ⁰	Good way	0.0	0.5	0.5	1.0
50	Bad way	0.5	0.5	1.0	1.5
180 ⁰	Good way	0.5	1.5	1.5	2.0
100	Bad way	1.0	2.0	2.5	3.0
 Strip thickn 	ess ≤0.5mm	Bend	ing Direction		
Test sample	e width 10mm		Good Way (Transverse to RD)		
			Bad Way (Parallel to RD)	Rolling Dire	ection [RD]



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - = (h0-h1)/h0×100

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P102M has good resistance in natural and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties				
Good	Oxyacetylene Welding	Good		
Excellent	Gas Shielded Arc Welding	Good		
Good	Coated Metal Arc Welding	Fair		
Good				
	Excellent	Excellent Gas Shielded Arc Welding Good Coated Metal Arc Welding		

• Cooling Fins for Radiators

• Heat Spreader

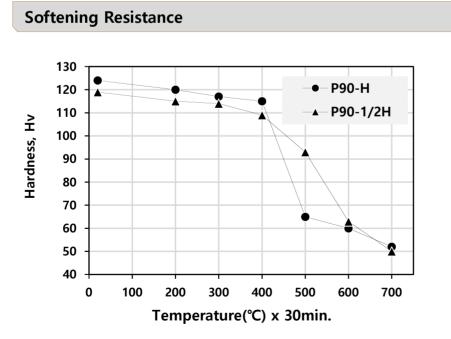
UNS No. C19210

Features

P90 has small amount of iron and phosphorus in copper and is hardened by Fe₂P precipitates in copper matrix. It has a very high conductivity combined with excellent cold forming properties. Softening resistance of low strength tempers is good.

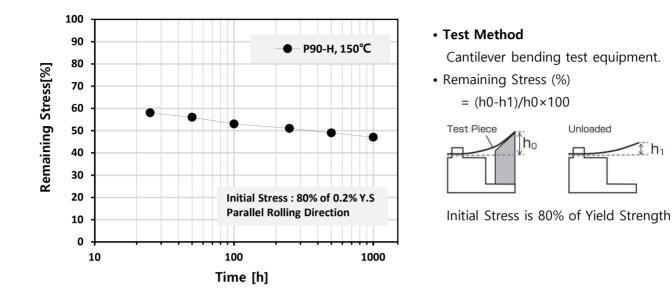
• Bus Bar

• Heat Sink


Typical Applications

- IC Lead Frame
- Air Conditioning Tubing
- Transistor

Chemical Composition (wt%) Physical Properties				
Cu	Balance	Melting Temperature	°C	1082
Fe	0.05-0.15	Specific Gravity	-	8.9
Ρ	0.025-0.04	Thermal Conductivity	W/(m·K)	350
other	≤0.5	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.9
		Modulus of Elasticity	GPa	125
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	85


Mechanical Properties					
Temper 1/4H 1/2H H					
Tensile Strength	MPa	295-370	350-430	390-440	
Elongation	%	≥15	≥6	≥4	
Hardness	Hv	85-110	100-125	120-140	
0.2% Yield Strength	MPa	≥260	≥300	≥350	

r/t (Minimum Bending Radius / thickness)				
Temper		1/4H	1/2H	н
90 ⁰	Good way	0.0	0.0	0.5
90	Bad way	0.0	0.0	1.0
180 ⁰	Good way	0.0	0.0	1.0
100	Bad way	0.0	0.5	1.5
• Strip thickness ≤0.5mm		Bending [Direction	\sim
• Test sample	e width 10mm	B : Bad V	sverse to RD)	A B ing Direction [RD]

1 h

Stress Relaxation Resistance

Corrosion Resistance

P90 has good resistance to corrosion in industrial and marine atmospheres. It is insensitive to stress corrosion cracking. However, it is susceptible to attack in the presence of ammonia, sulphur, hydrogen sulphide and mercury.

Fatigue Strength

Fabrication Properties			
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Not Recommended
Soldering	Excellent	Coated Metal Arc Welding	Excellent
Brazing	Excellent		

P90HYPER

POONGSAN

UNS No. C19217

Features

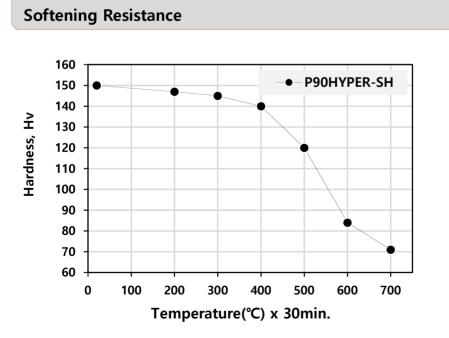
P90Hyper has small amount of iron, phosphorus and manganese in copper and is hardened by (Fe,Mn)₂P precipitates in copper matrix. It has a very high conductivity combined with excellent cold forming properties. Softening resistance of low strength tempers is good. P90Hyper has higher strength than P90.

Typical Applications

• IC Lead Frame

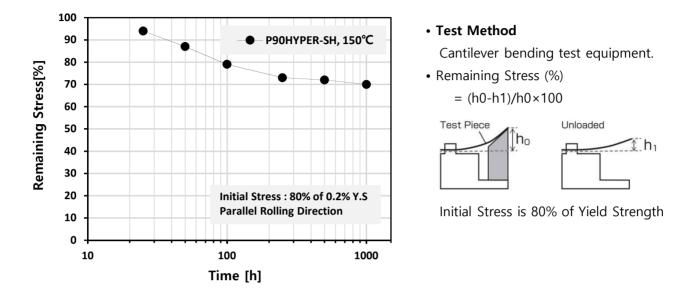
• Discrete TR

• Display Panel


- Cu-Clip
- Sensor

- Connector
- Transistor

hemical Co	omposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1082
Fe	0.09-0.15	Specific Gravity	-	8.9
Р	0.05-0.07	Thermal Conductivity	W/(m·K)	330
Mn	0.08-0.14	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.9
		Modulus of Elasticity	GPa	125
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	85


Mechanical Properties						
Temper		Н	SH			
Tensile Strength	MPa	400-480	470-560			
Elongation	%	≥4	≥2			
Hardness	Hv	120-145	140-160			
0.2% Yield Strength	MPa	≥350	≥400			

r/t (Minimu	r/t (Minimum Bending Radius / thickness)						
т	emper	н	SH				
90 ⁰	Good way	0.0	0.0				
90	Bad way	0.0	0.5				
180 ⁰	Good way	0.5	1.0				
100	Bad way	1.0	1.5				
-	ness ≤0.5mm	Bending Direction	\sum				
• Test sample	e width 10mm	A : Good Way (Transverse to RD B : Bad Way (Parallel to RD)	n) A B Rolling Direction [RD]				

 Vickers hardness after heat treatment (30minute).
 The diagram shows typical values.

- 82 -

Corrosion Resistance

P90Hyper has good resistance to corrosion in industrial and marine atmospheres. It is insensitive to stress corrosion cracking. However, it is susceptible to attack in the presence of ammonia, sulphur, hydrogen sulphide and mercury.

Fatigue Strength

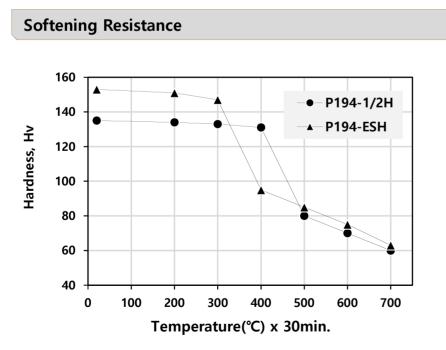
Fabrication Properties					
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good		
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Not Recommended		
Soldering	Excellent	Coated Metal Arc Welding	Excellent		
Brazing	Excellent				

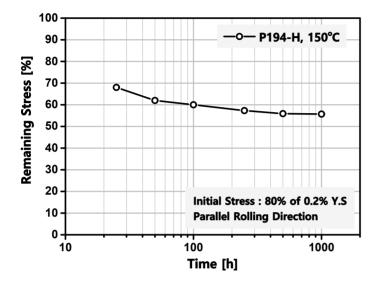
UNS No. C19400

Features

P194 is a medium strength alloy, with fine Fe precipitations. It combines high conductivity with medium strength, heat resistance and good relaxation properties.

- High Strength and good electrical, thermal conductivity
- Good Solderability

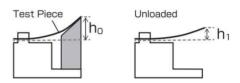

Typical Applications		
Lead frames	Automotive Connectors	• Contact Spring
 Electrical Connectors 	• Shield can	


Chemical Composition (wt%)		Physical Properties		
Cu	Balance	Melting Temperature	°C	1088
Fe	2.1-2.6	Specific Gravity	-	8.91
Zn	0.05-0.20	Thermal Conductivity	W/(m⋅K)	260
Р	0.015-0.15	Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.6
Pb	≤0.03	Modulus of Elasticity	GPa	121
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	65

Mechanical Properties						
Temper		1/2H	н	SH	ESH	ESH*
Tensile Strength	MPa	360-430	410-480	480-520	500-550	530-570
Elongation	%	≥6	≥4	≥4	-	≥4
Hardness	Hv	115-135	125-145	140-160	145-165	150-170
0.2% Yield Strength	MPa	≥270	≥360	≥420	≥440	≥470

* Heat treatment use

r/t (Minimum Bending Radius / thickness)						
Т	emper	1/2H	н	SH	ESH	
90 ⁰	Good way	0.0	0.5	1.0	2.0	
90	Bad way	0.0	1.0	2.0	3.0	
180 ⁰	Good way	0.0	1.0	2.0	3.0	
180	Bad way	0.5	1.5	3.0	4.0	
 Strip thickness ≤0.5mm 		Bend	ing Direction			
• Test sample	e width 10mm	В:	Good Way (Transverse to RE Bad Way (Parallel to RD)	Rolling Dire	Pection [RD]	



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - = (h0-h1)/h0×100

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P194 has good resistance in natural and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties				
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Excellent	
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended	
Brazing	Excellent			

P194HSL

POONGSAN

UNS No. C19400

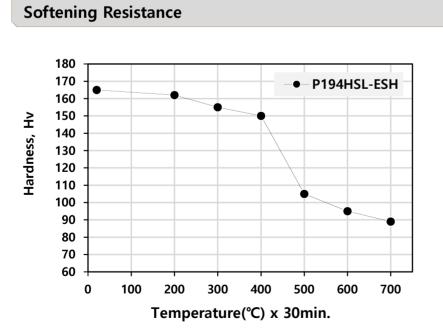
Features

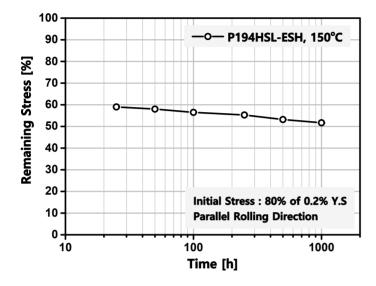
P194HSL has higher strength than P194. It combines high conductivity with medium strength, heat resistance and good relaxation properties.

- High Strength and good electrical, thermal conductivity
- Good Softening Resistance

Typical Applications

- Lead frames
- Electrical Connectors
- Automotive Connectors
- LED frame

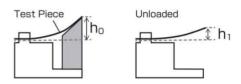

Shield can


Chemical Co	omposition (wt%)	Physical
Cu	Balance	Melting Te
Fe	2.1-2.6	Specific Gr
Zn	0.05-0.20	Thermal Co
Р	0.015-0.15	Coefficient
Pb	≤0.03	Modulus o

°C	1088
-	8.97
W/(m⋅K)	259
10 ⁻⁶ /K	17.6
GPa	121
-	0.33
%IACS	55
	- W/(m·K) 10 ⁻⁶ /K GPa -

Mechanical Properties					
Temper		ESH			
Tensile Strength	MPa	560-640			
Elongation	%	≥4			
Hardness	Hv	155-180			
0.2% Yield Strength	MPa	≥440			

r/t (Minimum Bending Radius / thickness)					
т	emper	ESH			
Good way 90 ⁰		2.0			
90	Bad way	3.0			
180 ⁰	Good way	3.0			
100	Bad way	4.0			
• Strip thickn		Bending Direction			
• Test sample	e width 10mm	 A : Good Way (Transverse to RD) B : Bad Way (Parallel to RD) 	A B Rolling Direction [RD]		



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - = (h0-h1)/h0×100

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P194HSL has good resistance in natural and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

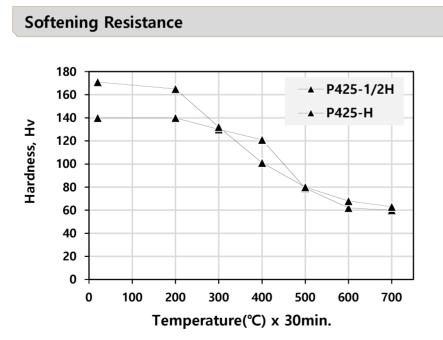
Fabrication Properties				
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Excellent	
Soldering	Excellent	Coated Metal Arc Welding	Not Recommended	
Brazing	Excellent			

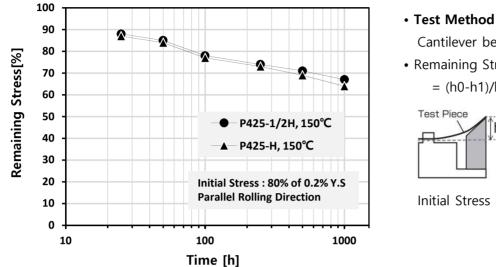
UNS No. C42500

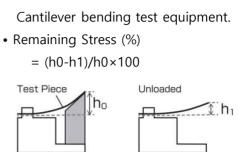
Features

P425 is a dispersion and solid solution strengthening alloy with mid-strength and midconductivity characteristics developed for use in electronic parts and automobile connector.

- Good cold forming properties
- Good conductivity combined with high strength and hardness
- Corrosion resistance, especially against seawater and industrial atmosphere


Typical Applications


- Automotive : Switches and Relays, Contacts, Connectors, Terminals, Junction box
- Electrical : Switches and Relays, Contacts, Connectors, Terminals


Chemical Composition (wt%) Physical Properties				
Cu	87-90	Melting Temperature	°C	1030
Zn	Balance	Specific Gravity	-	8.78
Sn	1.5-3.0	Thermal Conductivity	W/(m⋅K)	120
Р	≤0.35	Coefficient of Thermal Expansion	10 ⁻⁶ /K	18.4
		Modulus of Elasticity	GPa	110
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	28

Mechanical Properties					
Temper		1/2H	н	EH	
Tensile Strength	MPa	390-480	480-570	≥520	
Elongation	%	≥15	-	-	
Hardness	Hv	110-170	140-200	≥150	
0.2% Yield Strength	MPa	≥200	≥400	≥440	

r/t (Minimum Bending Radius / thickness)				
Т	emper	1/2H	н	EH
90 ⁰	Good way	0.0	0.0	0.0
90	Bad way	0.0	0.5	1.0
180 ⁰	Good way	1.0	1.5	2.0
	Bad way	1.5	2.0	2.5
-	ness ≤0.5mm	Bending [Direction	\sim
• Test sample width 10mm		B : Bad V	sverse to RD)	A B Dilling Direction [RD]

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P425 is resistant to industrial and drinking water, aqueous and alkaline solutions (not oxidizing), pure water vapor (steam), non oxidizing acids (without oxygen in solution) and salts, neutral saline solutions. Stress corrosion cracking susceptibility is low.

Fatigue Strength

Fabrication Properties				
Excellent	Oxyacetylene Welding	Good		
Less suitable	Gas Shielded Arc Welding	Excellent		
Excellent	Coated Metal Arc Welding	Not suitable		
Excellent				
	Less suitable Excellent	Less suitable Gas Shielded Arc Welding Excellent Coated Metal Arc Welding		

UNS No. C64750

Features

P26 are precipitation hardening alloys that form Ni2Si intermetallic compounds to form required properties.

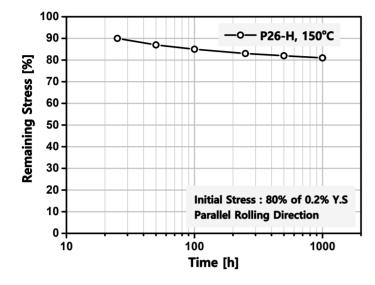
- High strength and good conductivity.
- High Thermal Resistance
- Good Formability and High Bend-Fatigue Resistance, Reliability and Stability

Typical Applications

- Switches and Relays • Electronic sockets
- Wire-to-wire connector • Automobile switch

• Terminals

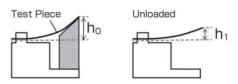
- Pitch/small connector
- Relay spring


•	Press	fit	

Chemical Co	mposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1078
Ni	1.0-3.0	Specific Gravity	-	8.91
Si	0.1-0.7	Thermal Conductivity	W/(m⋅K)	184
Sn	0.05-0.8	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.4
		Modulus of Elasticity	GPa	135
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	45

Mechanical Properties					
Temper		1/2H	н	EH	
Tensile Strength	MPa	451-588	588-657	≥657	
Elongation	%	≥8	≥8	≥3	
Hardness	Ηv	135-180	175-200	≥200	
0.2% Yield Strength	MPa	410-548	540-617	≥617	

r/t (Minimum Bending Radius / thickness)					
Т	Temper		н	EH	
90 ⁰	Good way	0	0	0	
90	Bad way	0	0	0.5	
180 ⁰	Good way	0	0.5	1.0	
	Bad way	0	0.5	1.0	
-	• Strip thickness ≤0.5mm		Direction	\sim	
• Test sample width 10mm		B: Bad	sverse to RD)	Olling Direction [RD]	



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P26 has good resistance in natural and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties				
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good	
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Good	
Soldering	Excellent	Coated Metal Arc Welding	Good	
Brazing	Excellent			

P26HYPER

POONGSAN

UNS No. C64750

Features

P26HYPER is an alloy which has a good balance of strength and electrical conductivity with excellent bending workability

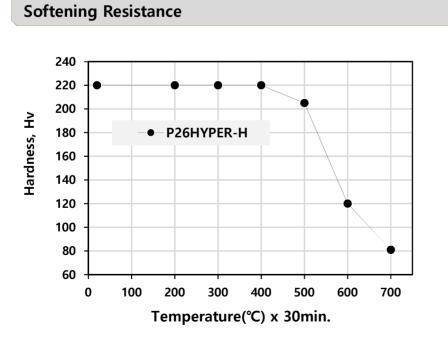
- Good balance of strength and electrical conductivity
- Improved bending workability by control of crystal structure
- Optimized spring limit by control of aging and stress relief treatment

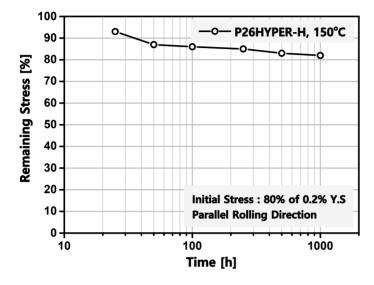
Typical Applications

TerminalsContacts

• Wire-to-wire connector

• Automobile switch

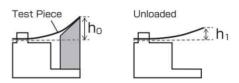

- Pitch/small connector
- Relay spring


•	Switches	
---	----------	--

Chemical Co	omposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1078
Ni	2.0-2.5	Specific Gravity	-	8.9
Si	0.4-0.8	Thermal Conductivity	W/(m⋅K)	165
Sn	0.02-0.4	Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.1
Р	<0.02	Modulus of Elasticity	GPa	130
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	40

Mechanical Properties					
Temper		1/2H	н	EH	
Tensile Strength	MPa	650-710	700-750	750-800	
Elongation	%	≥8	≥8	≥3	
Hardness	Hv	190-220	210-235	235-255	
0.2% Yield Strength	MPa	610-670	640-710	710-760	

r/t (Minimum Bending Radius / thickness)					
Т	emper	1/2H	н	EH	
90 ⁰	Good way	0	0	0.5	
90	Bad way	0	0.5	1.0	
180 ⁰	Good way	0.5	1	1.5	
100	Bad way	0.5	1	1.5	
• Strip thickness ≤0.5mm		Bending I	Direction	~	
• Test sampl	e width 10mm	B: Bad	sverse to RD)	Rolling Direction [RD]	



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - = (h0-h1)/h0×100

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P26HYPER has good resistance in natural and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties					
Excellent	Oxyacetylene Welding	Good			
Good	Gas Shielded Arc Welding	Good			
Excellent	Coated Metal Arc Welding	Good			
Excellent					
	Good Excellent	GoodGas Shielded Arc WeldingExcellentCoated Metal Arc Welding			

P19005

POONGSAN

UNS No. C19005

Features

P19005 is an alloy which has a good balance of strength and electrical conductivity with excellent bending workability

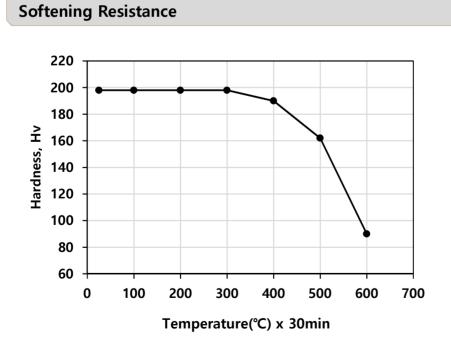
- Good balance of strength and electrical conductivity
- Improved bending workability by control of crystal structure
- High thermal resistance

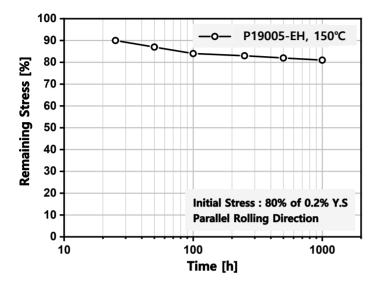
Typical Applications

TerminalsContacts

• Wire-to-wire connector

• Automobile switch

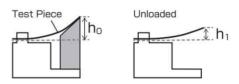

- Pitch/small connector
- Relay spring


•	Switches
---	----------

Chemical Co	mposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1062
Ni	1.4-1.7	Specific Gravity	-	8.85
Si	0.2-0.35	Thermal Conductivity	W/(m⋅K)	190
Sn	0.02-0.3	Coefficient of Thermal Expansion	10 ⁻⁶ /K	16.8
Zn	0.2-0.7	Modulus of Elasticity	GPa	125
Р	<0.03	Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	>45

Mechanical Properties					
Temper		1/2H	н	EH	SH
Tensile Strength	MPa	450-590	590-630	630-660	>650
Elongation	%	≥12	≥8	≥6	≥5
Hardness	Ηv	135-165	145-180	170-200	180-220
0.2% Yield Strength	MPa	400-470	460-520	520-600	560-640

r/t (Minimum Bending Radius / thickness)					
Temper		1/2H	н	EH	SH
90 ⁰	Good way	0	0	0	0.5
	Bad way	0	0	0.5	1.0
180 ⁰	Good way	0	0.5	1.0	2.0
100	Bad way	0	0.5	1.0	2.0
• Strip thickr	ness ≤0.5mm	Bend	ing Direction		
• Test sample width 10mm		RD)	Good Way (Transverse to Bad Way (Parallel to RD)	Rolling	Direction



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - = (h0-h1)/h0×100

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P19005 has good resistance in natural and industrial atmosphere. as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties					
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good		
Capacity for Being Hot Formed	Excellent	Gas Shielded Arc Welding	Good		
Soldering	Excellent	Coated Metal Arc Welding	Good		
Brazing	Excellent				

P1000HS

UNS No. C64751

Features

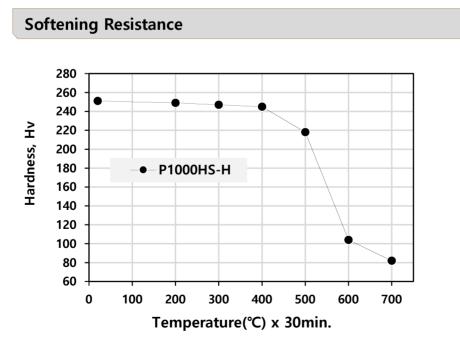
P1000HS is a Corson(Cu-Ni-Si) alloy that can be hardened by precipitation and by cold rolling. This alloy provides a good combination of high strength, medium electrical conductivity and good bending formability

- High strength & medium level conductivity
- Excellent elastic strength and thermal properties

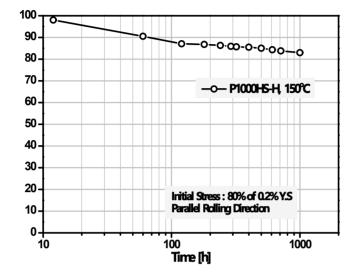
Typical Applications

• Board-to-Board connector

- Wire-to-wire connector
- Pitch/small connector

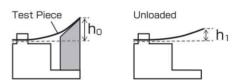

- Electronic sockets
- Automobile switch
- Relay spring

• Mobile phone parts


Chemical Co	emposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1075
Ni	2.5-2.9	Specific Gravity	-	8.89
Si	0.5-0.8	Thermal Conductivity	W/(m⋅K)	160 200 (1/2H)
Sn	0.1-0.4	Coefficient of Thermal Expansion	10⁻ ⁶ /K	17.3
Р	<0.02	Modulus of Elasticity	GPa	130
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	40 48(1/2H)

Mechanical Properties					
Temper		1/2H	н	EH	SH
Tensile Strength	MPa	700-800	760-870	800-900	850-950
Elongation	%	≥8	≥2	≥1	≥1
Hardness	Ηv	210-245	230-265	235-275	250-295
0.2% Yield Strength	MPa	600-740	720-840	760-880	800-900

r/t (Minimum Bending Radius / thickness)					
Temper		1/2H	н	EH	
90 ⁰	Good way	0.5	1.0	1.5	
90	Bad way	1.0	1.5	2.5	
180 ⁰	Good way	0.5	1.0	1.5	
100	Bad way	1.0	1.5	3.0	
Strip thickness	s ≤0.5mm	Bending Direc	tion	<	
• Test sample width 10mm		A : Good Wa (Transvers B : Bad Way (Parallel to	e to RD)	Direction [RD]	


Remaining Stress [%]

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P1000HS is resistant to pure water vapor and non oxidizing acids and alkalis as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties					
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good		
Capacity for Being Hot Formed	Fair	Gas Shielded Arc Welding	Good		
Soldering	Excellent	Coated Metal Arc Welding	Good		
Brazing	Excellent				

P1000HS2

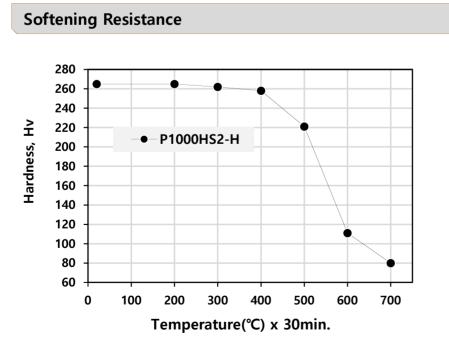
POONGSAN

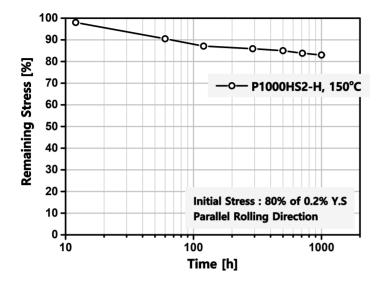
UNS No. C64752

Features

P1000HS2 is a Corson(Cu-Ni-Si) alloy that can be hardened by precipitation and by cold rolling. This alloy provides a good combination of high strength, medium electrical conductivity and good bending formability.

- High strength & medium level conductivity
- Excellent elastic strength and thermal properties

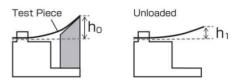

Typical Applications


- Board-to-Board connector
- Electronic sockets
- Mobile phone parts
- Wire-to-wire connector
- Automobile switch
- Pitch/small connector
- Relay spring

Chemical Co	mposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1078
Ni	2.8-3.2	Specific Gravity	-	8.86
Si	0.6-0.9	Thermal Conductivity	W/(m·K)	150
Sn	0.1-0.4	Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.3
Р	<0.02	Modulus of Elasticity	GPa	130
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	37

Mechanical Properties						
Temper		н	EH	SH		
Tensile Strength	MPa	780-880	830-930	880-1000		
Elongation	%	≥5	≥1	≥1		
Hardness	Hv	235-270	240-290	270-310		
0.2% Yield Strength	MPa	740-860	800-910	850-980		

r/t (Minimum Bending Radius / thickness)					
Т	Temper		EH	SH	
90 ⁰	Good way	0.5	2.0	2.5	
90	Bad way	1.0	3.5	5.0	
180 ⁰	Good way	1.5	2.0	-	
100	Bad way	2.5	3.5	-	
• Strip thickness ≤0.5mm		Bending I	Direction	\sim	
• Test sample width 10mm		B: Bad	sverse to RD)	Rolling Direction [RD]	



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P1000HS2 is resistant to pure water vapor and non oxidizing acids and alkalis as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties						
Capacity for Being Cold Worked	Excellent	Oxyacetylene Welding	Good			
Capacity for Being Hot Formed	Fair	Gas Shielded Arc Welding	Good			
Soldering	Excellent	Coated Metal Arc Welding	Good			
Brazing	Excellent					

P1000HS3

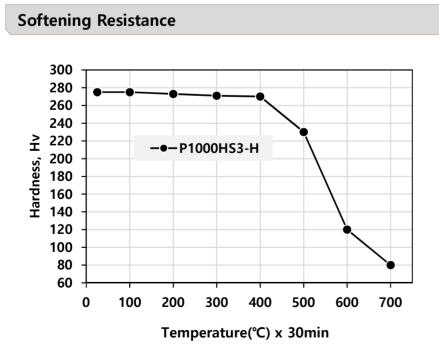
POONGSAN

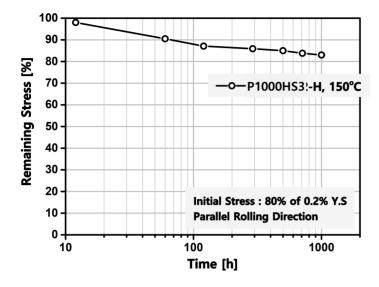
UNS No. C64752

Features

P1000HS3 is a Corson(Cu-Ni-Si) alloy that can be hardened by precipitation and by cold rolling. This alloy provides a good combination of high strength, medium electrical conductivity and good bending formability.

- High strength & medium level conductivity
- Excellent elastic strength and thermal properties

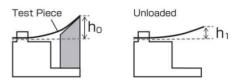

Typical Applications


- Board-to-Board connector
- Electronic sockets
- Mobile phone parts
- Wire-to-wire connector
- Automobile switch
- Pitch/small connector
- Relay spring

Chemical Co	omposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1080
Ni	3.2-3.6	Specific Gravity	-	8.82
Si	0.7-1.0	Thermal Conductivity	W/(m⋅K)	140
Sn	0.1-0.4	Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.3
Р	<0.02	Modulus of Elasticity	GPa	130
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	35

Mechanical Properties					
Temper		н	EH	SH	
Tensile Strength	MPa	850-950	900-1000	950-1050	
Elongation	%	≥5	≥1	≥1	
Hardness	Hv	250-295	265-310	280-330	
0.2% Yield Strength	MPa	800-900	860-980	910-1030	

r/t (Minimum Bending Radius / thickness)					
1	Temper		EH	SH	
90 ⁰	Good way	1.5	2.5	-	
90	Bad way	2.0	5.0	-	
180 ⁰	Good way	-	-	-	
	Bad way	-	-	-	
-	• Strip thickness ≤0.5mm		Direction	5	
• Test sample width 10mm		RD) B : Bad V	sverse to	Rolling Direction [RD]	



Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P1000HS3 is resistant to pure water vapor and non oxidizing acids and alkalis as well as neutral saline solutions. The material is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties						
Excellent	Oxyacetylene Welding	Good				
Fair	Gas Shielded Arc Welding	Good				
Excellent	Coated Metal Arc Welding	Good				
Excellent						
	Fair Excellent	FairGas Shielded Arc WeldingExcellentCoated Metal Arc Welding				

• Terminals

• Relay spring

UNS No. C70250

Features

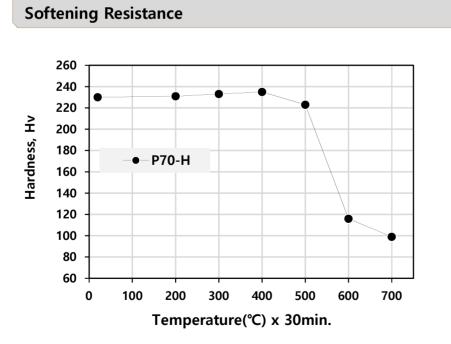
P70 is Corson Alloy consisting of high mechanical strength, high electrical conductivity and excellent thermal resistance. P70 satisfied with UNS C7025, is best suited for in IT & electrical components.

• Excellent bend ability, excellent hot and cold forming properties

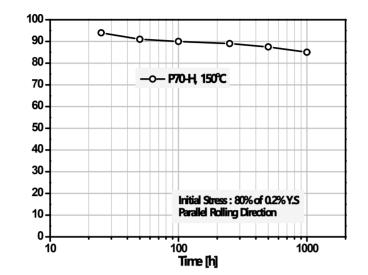
• Lead Frame

• LED

• High strength and a good corrosion resistance

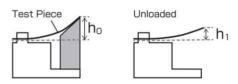

Typical Applications

- Automotive Switches
- Automotive Contacts
- Connectors


Chemical Co	omposition (wt%)	Physical Properties		
Cu	Balance	Melting Temperature	°C	1095
Ni	2.2-4.2	Specific Gravity	-	8.82
Si	0.25-1.2	Thermal Conductivity	W/(m⋅K)	168
Mg	0.05-0.3	Coefficient of Thermal Expansion	10 ⁻⁶ /K	17.6
Р	0.02-0.16	Modulus of Elasticity	GPa	131
		Poisson's Ratio	-	0.33
		Electrical Conductivity	%IACS	45

Mechanical Properties					
Temper		1/2H	н		
Tensile Strength	MPa	607-726	710-810		
Elongation	%	≥6	≥6		
Hardness	Hv	180-220	≥210		
0.2% Yield Strength	MPa	≥500	≥670		

r/t (Minimum Bending Radius / thickness)					
T	emper	1/2H	н		
90 ⁰	Good way	0.0	0.5		
90	Bad way	0.0	0.5		
180 ⁰	Good way	1.0	2.0		
100	Bad way	1.0	2.0		
•	ness ≤0.5mm	Bending Direction			
• Test sample	e width 10mm	A : Good Way (Transverse to RD B : Bad Way (Parallel to RD)	D) A B Rolling Direction [RD]		


Remaining Stress [%]

Test Method

Cantilever bending test equipment.

- Remaining Stress (%)
 - $= (h0-h1)/h0 \times 100$

Initial Stress is 80% of Yield Strength

Corrosion Resistance

P70 has good corrosion resistance in natural atmosphere. It is insensitive to stress corrosion cracking.

Fatigue Strength

Fabrication Properties						
Good	Oxyacetylene Welding	Good				
Excellent	Gas Shielded Arc Welding	Good				
Good	Coated Metal Arc Welding	Fair				
Good						
	Excellent	Excellent Gas Shielded Arc Welding Good Coated Metal Arc Welding				